Nano Research

, Volume 8, Issue 5, pp 1680–1688 | Cite as

Crystal-oriented wrinkles with origami-type junctions in few-layer hexagonal boron nitride

  • Camilla K. Oliveira
  • Egleidson F. A. Gomes
  • Mariana C. Prado
  • Thonimar V. Alencar
  • Regiane Nascimento
  • Leandro M. Malard
  • Ronaldo J. C. Batista
  • Alan B. de Oliveira
  • Helio Chacham
  • Ana M. de Paula
  • Bernardo R. A. NevesEmail author
Research Article


Understanding layer interplay is the key to utilizing layered heterostructures formed by the stacking of different two-dimensional materials for device applications. Boron nitride has been demonstrated to be an ideal substrate on which to build graphene devices with improved mobilities. Here we present studies on the morphology and optical response of annealed few-layer hexagonal boron nitride flakes deposited on a silicon substrate that reveal the formation of linear wrinkles along well-defined crystallographic directions. The wrinkles formed a network of primarily threefold and occasionally fourfold origami-type junctions throughout the sample, and all threefold junctions and wrinkles formed along the armchair crystallographic direction. Furthermore, molecular dynamics simulations yielded, through spontaneous symmetry breaking, wrinkle junction morphologies that are consistent with both the experimental results and the proposed origami-folding model. Our findings indicate that this morphology may be a general feature of several two-dimensional materials under proper stress-strain conditions, resulting in direct consequences in device strain engineering.


hexagonal boron nitride 2D materials wrinkles origami folding annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_665_MOESM1_ESM.pdf (664 kb)
Supplementary material, approximately 665 KB.

Supplementary material, approximately 28.8 MB.


  1. [1]
    Bower, A. F. Applied Mechanics of Solids; CRC Press: Florida, 2009.Google Scholar
  2. [2]
    Lakes, R. Foam structures with a negative Poisson’s ratio. Science 1987, 235, 1038–1040.CrossRefGoogle Scholar
  3. [3]
    Baughman, R. H.; Stafstrom, S.; Cui, C.; Dantas, S. O. Materials with negative compressibilities in one or more dimensions. Science 1998, 279, 1522–1524.CrossRefGoogle Scholar
  4. [4]
    Barboza, A. P. M.; Chacham, H.; Oliveira, C. K.; Fernandes, T. F. D.; Martins Ferreira, E. H.; Archanjo, B. S.; Batista, R. J. C.; de Oliveira, A. B.; Neves, B. R. A. Dynamic negative compressibility of few-layer graphene, h-BN, and MoS2. Nano Lett. 2012, 12, 2313–2317.CrossRefGoogle Scholar
  5. [5]
    Cairns, A. B.; Catafesta, J.; Levelut, C.; Rouquette, J.; van der Lee, A.; Peters, L.; Thompson, A. L.; Dmitriev, V.; Haines, J.; Goodwin, A. L. Giant negative linear compressibility in zinc dicyanoaurate. Nat. Mater. 2013, 12, 212–216.CrossRefGoogle Scholar
  6. [6]
    Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina A. V.; Zolotukhin, A. A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45, 2017–2021.CrossRefGoogle Scholar
  7. [7]
    Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  8. [8]
    Xu, K.; Cao, P.; Heath, J. R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett. 2009, 9, 4446–4451.CrossRefGoogle Scholar
  9. [9]
    Robertson, A. W.; Bachmatiuk, A.; Wu, Y. A.; Schäffel, F.; Büchner, B.; Rümmeli, M. H.; Warner, J. H. Structural distortions in few-layer graphene creases. ACS Nano 2011, 5, 9984–9991.CrossRefGoogle Scholar
  10. [10]
    Zhu, W.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H.; Tersoff, J.; Avouris, P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012, 12, 3431–3436.CrossRefGoogle Scholar
  11. [11]
    Huang, Y.; Wu, J.; Xu, X.; Ho, Y.; Ni, G.; Zou, Q.; Kok, G.; Koon, W.; Zhao, W.; Castro Neto, A. H.; Eda, G.; Shen, C.; Özyilmaz, B. An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Res. 2013, 6, 200–207.CrossRefGoogle Scholar
  12. [12]
    Lherbier, A.; Roche, S.; Restrepo, O. A.; Niquet, Y. M.; Delcorte, A.; Charlier, J. C.; Highly defective graphene: A key prototype of two dimensional Anderson insulators. Nano Res. 2013, 6, 326–334.CrossRefGoogle Scholar
  13. [13]
    Shaw, J. C.; Zhou, H.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y; Duan, X. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.CrossRefGoogle Scholar
  14. [14]
    Zhang, K.; Arroyo, M. Understanding and strain-engineering wrinkle networks in supported graphene through simulations. J. Mech. Phys. Solids 2014, 72, 61–74.CrossRefGoogle Scholar
  15. [15]
    Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys. 2010, 6, 30–33.CrossRefGoogle Scholar
  16. [16]
    Feng, J.; Qian, X.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 2012, 6, 866–872.CrossRefGoogle Scholar
  17. [17]
    Naumov, I.; Bratkovsky, A. M.; Ranjan, V. Unusual flexoelectric effect in twodimensional noncentrosymmetric sp2-bonded crystals. Phys. Rev. Lett. 2009, 102, 217601.CrossRefGoogle Scholar
  18. [18]
    Roy, K.; Bandyopadhyay, S.; Atulasimha, J. Hybrid spintronics and straintronics: A magnetic technology for ultra-low energy computing and signal processing. Appl. Phys. Lett 2011, 99, 063108.CrossRefGoogle Scholar
  19. [19]
    Pan, Z.; Liu, N.; Fu, L.; Liu, Z. Wrinkle engineering: A new approach to massive graphene nanoribbon arrays. J. Am. Chem. Soc. 2011, 133, 17578–17581.CrossRefGoogle Scholar
  20. [20]
    Prado, M. C.; Nascimento, R.; Moura, L. G.; Matos, M. J. S.; Mazzoni, M. S. C.; Cancado, L. G.; Chacham, H.; Neves, B. R. A. Two-dimensional molecular crystals of phosphonic acids on graphene. ACS Nano 2011, 5, 394–398.CrossRefGoogle Scholar
  21. [21]
    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 2010, 5, 722–726.CrossRefGoogle Scholar
  22. [22]
    Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 40, A1133–A1138.CrossRefGoogle Scholar
  23. [23]
    Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-n materials simulation. Condens. Matter 2002, 14, 2745–2779.CrossRefGoogle Scholar
  24. [24]
    Malard, L. M.; Alencar, T. V.; Barboza, A. P. M.; Mak, K. F.; de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 2013, 87, 201401.CrossRefGoogle Scholar
  25. [25]
    Li, Y.; Rao, Y.; Mak, K. F.; You, Y.; Wang, S.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329–3333.CrossRefGoogle Scholar
  26. [26]
    Paszkowicz, W.; Pelka, J. B.; Knapp, M.; Szyszko, T.; Podsiadlo, S. Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10-297.5 K temperature range. Appl. Phys. A 2002, 75, 431–435.CrossRefGoogle Scholar
  27. [27]
    Li, L. H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 2014, 8, 1457–1462.CrossRefGoogle Scholar
  28. [28]
    Kim, K.; Artyukhov, V. I.; Regan, W.; Liu, Y.; Crommie, M. F.; Yakobson, B. I.; Zettl, A. Ripping graphene: Preferred directions. Nano Lett. 2012, 12, 293–297.CrossRefGoogle Scholar
  29. [29]
    Oliveira, C. K.; Matos, M. J. S.; Mazzoni, M. S. C.; Chacham, H.; Neves, B. R. A. Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: A confined water effect? Nanotechnology 2012, 23, 175703.CrossRefGoogle Scholar
  30. [30]
    Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 1995, 117, 1–19.CrossRefGoogle Scholar
  31. [31]
    Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991.CrossRefGoogle Scholar
  32. [32]
    Albe, K.; Möller, W. Modelling of boron nitride: Atomic scale simulations on thin film growth. Comp. Mat. Sci. 1998, 10, 111–115.CrossRefGoogle Scholar
  33. [33]
    Dappe, Y. J.; Basanta, M. A.; Flores, F.; Ortega, J. Weak chemical interaction and van der Waals forces between graphene layers: A combined density functional and intermolecular perturbation theory approach. Phys. Rev. B 2006, 74, 205434.CrossRefGoogle Scholar
  34. [34]
    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511.CrossRefGoogle Scholar
  35. [35]
    Hoover, W. G. Canonical dynamics: Equilibrium phase-space equations. Phys. Rev. A 1985, 31, 1695.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Camilla K. Oliveira
    • 1
  • Egleidson F. A. Gomes
    • 1
  • Mariana C. Prado
    • 1
  • Thonimar V. Alencar
    • 1
  • Regiane Nascimento
    • 1
  • Leandro M. Malard
    • 1
  • Ronaldo J. C. Batista
    • 2
  • Alan B. de Oliveira
    • 2
  • Helio Chacham
    • 1
  • Ana M. de Paula
    • 1
  • Bernardo R. A. Neves
    • 1
    Email author
  1. 1.Departamento de Física, ICExUniversidade Federal de Minas Gerais - UFMGBelo HorizonteBrazil
  2. 2.Departamento de Física, ICEBUniversidade Federal de Ouro Preto - UFOPOuro PretoBrazil

Personalised recommendations