Nano Research

, Volume 8, Issue 1, pp 257–262 | Cite as

Highly sensitive detection of mercury(II) ions with few-layer molybdenum disulfide

  • Shan Jiang
  • Rui Cheng
  • Rita Ng
  • Yu Huang
  • Xiangfeng Duan
Research Article

Abstract

Two-dimensional (2D) layered transition metal dichalcogenide (TMD) materials (e.g., MoS2) have attracted considerable interest due to their atomically thin geometry and semiconducting electronic properties. With ultrahigh surface to volume ratio, the electronic properties of these atomically thin semiconductors can be readily modulated by their environment. Here we report an investigation of the effects of mercury(II) (Hg2+) ions on the electrical transport properties of few-layer molybdenum disulfide (MoS2). The interaction between Hg2+ions and few-layer MoS2 was studied by field-effect transistor measurements and photoluminescence. Due to a high binding affinity between Hg2+ ions and the sulfur sites on the surface of MoS2 layers, Hg2+ ions can strongly bind to MoS2. We show that the binding of Hg2+ can produce a p-type doping effect to reduce the electron concentration in n-type few-layer MoS2. It can thus effectively modulate the electron transport and photoluminescence properties in few-layer MoS2. By monitoring the conductance change of few-layer MoS2 in varying concentration Hg2+ solutions, we further show that few-layer MoS2 transistors can function as highly sensitive sensors for rapid electrical detection of Hg2+ ion with a detection limit of 30 pM.

Keywords

molybdenum disulfide 2D layered materials mercury doping effect sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_658_MOESM1_ESM.pdf (639 kb)
Supplementary material, approximately 638 KB.

References

  1. [1]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  2. [2]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  3. [3]
    Li, H.; Wu, H.; Yin, Z.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.CrossRefGoogle Scholar
  4. [4]
    Huang, X.; Zeng, Z.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.CrossRefGoogle Scholar
  5. [5]
    Shaw, J. C.; Zhou, H.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang Y.; Duan, X. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.CrossRefGoogle Scholar
  6. [6]
    Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang Y.; Duan, X. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952–958.CrossRefGoogle Scholar
  7. [7]
    Yin, Z.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6, 74–80.CrossRefGoogle Scholar
  8. [8]
    Liu, J. Q.; Zeng, Z. Y.; Cao, X. H.; Lu, G.; Wang, L. H.; Fan, Q. L.; Huang, W.; Zhang, H. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 2012, 8, 3517–3522.CrossRefGoogle Scholar
  9. [9]
    Ji, Q.; Zhang, Y.; Gao, T.; Zhang, Y.; Ma, D.; Liu, M.; Chen, Y.; Qiao, X.; Tan, P.; Kan, M.; Feng, J.; Sun, Q.; Liu, Z. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013, 13, 3870–3877.CrossRefGoogle Scholar
  10. [10]
    Yin, X.; Ye, Z.; Chenet, D. A.; Ye, Y.; O’Brien, K.; Hone, J. C.; Zhang, X. Edge nonlinear optics on a MoS2 atomic monolayer. Science 2014, 344, 488–490.CrossRefGoogle Scholar
  11. [11]
    Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48.CrossRefGoogle Scholar
  12. [12]
    Duan, X.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H.; Wu, X.; Tang, Y.; Zhang, Q.; Pan, A.; et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. online 2014 doi:10.1038/nnano.2014.222.Google Scholar
  13. [13]
    Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang Y.; Duan X. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials Nat. Nanotechnol. 2013, 8, 952–958.CrossRefGoogle Scholar
  14. [14]
    Yu, W. J.; Li, Z.; Zhou, H.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2013, 12, 246–252.CrossRefGoogle Scholar
  15. [15]
    Li, H.; Duan, X.; Wu, X.; Zhuang, X.; Zhou, H.; Zhang, Q.; Zhu, X.; Hu, W.; Ren, P.; Guo, P.; et al. Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties J. Am. Chem. Soc. 2014, 136, 3756–3759.CrossRefGoogle Scholar
  16. [16]
    Halim, U.; Zheng, C. R.; Chen, Y.; Lin, Z.; Jiang, S.; Cheng, R.; Huang, Y.; Duan, X. A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction. Nat. Commun. 2013, 4, 2213.CrossRefGoogle Scholar
  17. [17]
    Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991–1995.CrossRefGoogle Scholar
  18. [18]
    He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.CrossRefGoogle Scholar
  19. [19]
    Late, D. J.; Huang, Y. K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J.; Yan, A.; Charles, D.; Waghmare, U. V.; Dravid, V. P.; et al. Sensing behavior of atomically thin-layered MoS2 transistors. Acs Nano 2013, 7, 4879–4891.CrossRefGoogle Scholar
  20. [20]
    Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with mono layer MoS2. Nano Lett. 2013, 13, 668–673.CrossRefGoogle Scholar
  21. [21]
    Lee, K.; Gatensby, R.; McEvoy, N.; Hallam, T.; Duesberg, G. S. High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 2013, 25, 6699–6702.CrossRefGoogle Scholar
  22. [22]
    Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. L. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63–67.CrossRefGoogle Scholar
  23. [23]
    Clevenger, W. L.; Smith, B. W.; Winefordner, J. D. Trace determination of mercury: A review. Crit. Rev. Anal. Chem. 1997, 27, l–26.CrossRefGoogle Scholar
  24. [24]
    Leopold, K.; Foulkes, M.; Worsfold, P. Methods for the determination and speciation of mercury in natural waters—A review. Anal. Chim. Acta. 2010, 663, 127–138.CrossRefGoogle Scholar
  25. [25]
    Chen, K; Lu, G.; Chang, J.; Mao, S.; Yu, K.; Cui, S.; Chen, J. Hg(II) ion detection using thermally reduced graphene oxide decorated with functionalized gold nanoparticles. Anal. Chem. 2012, 84, 4057–4062.CrossRefGoogle Scholar
  26. [26]
    Yang, Y. K.; Yook, K. J.; Tae, J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc. 2005, 127, 16760–16761.CrossRefGoogle Scholar
  27. [27]
    Lee, J. S.; Han, M. S.; Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2007, 119, 4171–4174.CrossRefGoogle Scholar
  28. [28]
    Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R. pH-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv. Funct. Mater. 2011, 21, 3508–3515.CrossRefGoogle Scholar
  29. [29]
    Darbha, G. K.; Ray, A.; Ray, P. C. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. Acs Nano 2007, 1, 208–214.CrossRefGoogle Scholar
  30. [30]
    Cho, E. S.; Kim, J.; Tejerina, B.; Hermans, T. M.; Jiang, H.; Nakanishi, H.; Yu, M.; Patashinski, A. Z.; Glotzer, S. C.; Stellacci, F. Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nat. Mater. 2012, 11, 978–985.CrossRefGoogle Scholar
  31. [31]
    Knopfmacher, O.; Hammock, M. L.; Appleton, A. L.; Schwartz, G.; Mei, J. G.; Lei, T.; Pei, J.; Bao, Z. N. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 2014, 5, 2954.CrossRefGoogle Scholar
  32. [32]
    Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Huang, Y.; Duan, X. Benchmarking few-layer MoS2 transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5: 5143.CrossRefGoogle Scholar
  33. [33]
    Cheng, R.; Li, D.; Zhou, H.; Wang, C.; Yin, A.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction pn diodes [online]. Nano Lett. 2014, DOI: 10.1021/nl502075n. http://arxiv.org/abs/1403.3447 (accessed on November 24, 2014).Google Scholar
  34. [34]
    Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRefGoogle Scholar
  35. [35]
    Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.CrossRefGoogle Scholar
  36. [36]
    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.CrossRefGoogle Scholar
  37. [37]
    Sercombe, D.; Schwarz, S.; Del Pozo-Zamudio, O.; Liu, F.; Robinson, B. J.; Chekhovich, E. A.; Tartakovskii, I. I.; Kolosov O.; Tartakovskii. A. I. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 2013, 3, 3489.CrossRefGoogle Scholar
  38. [38]
    Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J.; Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 2011, 99, 102109.CrossRefGoogle Scholar
  39. [39]
    Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shan Jiang
    • 1
  • Rui Cheng
    • 2
  • Rita Ng
    • 1
  • Yu Huang
    • 2
    • 3
  • Xiangfeng Duan
    • 1
    • 3
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.California Nanosystems InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations