Advertisement

Nano Research

, Volume 8, Issue 5, pp 1505–1521 | Cite as

A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors

  • Mohammad-Ali ShahbaziEmail author
  • Neha Shrestha
  • Ermei Mäkilä
  • Francisca Araújo
  • Alexandra Correia
  • Tomás Ramos
  • Bruno Sarmento
  • Jarno Salonen
  • Jouni Hirvonen
  • Hélder A. SantosEmail author
Research Article

Abstract

Combination therapy via nanoparticulate systems has already been proposed as a synergistic approach for cancer treatment. Herein, undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with sorafenib and surface-biofunctionalized with anti-CD326 antibody (Ab) were developed for cancer chemo-immunotherapy in MCF-7 and MDA-MB-231 breast cancer cells. The cytocompatibility study showed no significant toxicity for the bare and antibody-conjugated UnTHCPSi (Un-Ab) NPs at concentrations lower than 200 μg·mL−1. Compared to the bare UnTHCPSi, Un-Ab NPs loaded with sorafenib reduced the premature drug release in plasma, increasing the probability of proper drug targeting. In addition, high cellular interaction and subsequent internalization of the Un-Ab NPs into the cells expressing CD326 antigen demonstrated the possibility of improving antigen-mediated endocytosis via CD326 targeting. While an in vitro antitumor study revealed a higher inhibitory effect of the sorafenib-loaded Un-Ab NPs compared to the drug-loaded UnTHCPSi NPs in the CD326 positive MCF-7 cells, there was no difference in the anti-proliferation impact of both the abovementioned NPs in the CD326 negative MDA-MB-231 cells, suggesting CD326 as an appropriate receptor for Ab-mediated drug delivery. It was also shown that the anti-CD326 Ab can act as an immunotherapeutic agent by inducing antibody dependent cellular cytotoxicity and enhancing the interaction of effector immune and cancer cells for subsequent phagocytosis and cytokine secretion. Hence, the developed nanovectors can be applied for simultaneous tumor-selective drug targeting and immunotherapy.

Keywords

CD326 antibody porous silicon nanoparticles chemo-immunotherapy breast cancer drug targeting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_635_MOESM1_ESM.pdf (1.8 mb)
Supplementary material, approximately 1.04 MB.

References

  1. [1]
    Nowak, A. K.; Lake, R. A.; Robinson, B. W. Combined chemoimmunotherapy of solid tumours: Improving vaccines. Adv. Drug Deliv. Rev. 2006, 58, 975–990.CrossRefGoogle Scholar
  2. [2]
    Lee, I. H.; An, S.; Yu, M. K.; Kwon, H. K.; Im, S. H.; Jon, S. Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. J. Control. Release 2011, 155, 435–441.CrossRefGoogle Scholar
  3. [3]
    Molavi, O.; Xiong, X. B.; Douglas, D.; Kneteman, N.; Nagata, S.; Pastan, I.; Chu, Q.; Lavasanifar, A.; Lai, R. Anti-cd30 antibody conjugated liposomal doxorubicin with significantly improved therapeutic efficacy against anaplastic large cell lymphoma. Biomaterials 2013, 34, 8718–8725.CrossRefGoogle Scholar
  4. [4]
    Maeda, H.; Matsumura, Y. Epr effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 129–130.CrossRefGoogle Scholar
  5. [5]
    Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1615–1626.CrossRefGoogle Scholar
  6. [6]
    Chattopadhyay, N.; Fonge, H.; Cai, Z.; Scollard, D.; Lechtman, E.; Done, S. J.; Pignol, J. P.; Reilly, R. M. Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol. Pharmaceutics 2012, 9, 2168–2179.Google Scholar
  7. [7]
    Lu, Y. M.; Huang, J. Y.; Wang, H.; Lou, X. F.; Liao, M. H.; Hong, L. J.; Tao, R. R.; Ahmed, M. M.; Shan, C. L.; Wang, X. L. et al. Targeted therapy of brain ischaemia using Fas ligand antibody conjugated peg-lipid nanoparticles. Biomaterials 2014, 35, 530–537.CrossRefGoogle Scholar
  8. [8]
    Fiandra, L.; Mazzucchelli, S.; De Palma, C.; Colombo, M.; Allevi, R.; Sommaruga, S.; Clementi, E.; Bellini, M.; Prosperi, D.; Corsi, F. Assessing the in vivo targeting efficiency of multifunctional nanoconstructs bearing antibody-derived ligands. ACS Nano 2013, 7, 6092–6102.CrossRefGoogle Scholar
  9. [9]
    Weiner, L. M.; Surana, R.; Wang, S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10, 317–327.CrossRefGoogle Scholar
  10. [10]
    Portnoy, E.; Lecht, S.; Lazarovici, P.; Danino, D.; Magdassi, S. Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine 2011, 7, 480–488.CrossRefGoogle Scholar
  11. [11]
    Berlin, J. M.; Pham, T. T.; Sano, D.; Mohamedali, K. A.; Marcano, D. C.; Myers, J. N.; Tour, J. M. Noncovalent functionalization of carbon nanovectors with an antibody enables targeted drug delivery. ACS Nano 2011, 5, 6643–6650.CrossRefGoogle Scholar
  12. [12]
    Gu, L.; Ruff, L. E.; Qin, Z.; Corr, M.; Hedrick, S. M.; Sailor, M. J. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic cd40 antibody. Adv. Mater. 2012, 24, 3981–3987.CrossRefGoogle Scholar
  13. [13]
    Illum, L.; Jones, P. D.; Baldwin, R. W.; Davis, S. S. Tissue distribution of poly(hexyl-2-cyanoacrylate) nanoparticles coated with monoclonal antibodies in mice bearing human tumor xenografts. J. Pharmacol. Exp. Ther. 1984, 230, 733–736.Google Scholar
  14. [14]
    Chinol, M.; Casalini, P.; Maggiolo, M.; Canevari, S.; Omodeo, E. S.; Caliceti, P.; Veronese, F. M.; Cremonesi, M.; Chiolerio, F.; Nardone, E. et al. Biochemical modifications of avidin improve pharmacokinetics and biodistribution, and reduce immunogenicity. Br. J. Cancer 1998, 78, 189–197.CrossRefGoogle Scholar
  15. [15]
    Scott, D.; Nitecki, D. E.; Kindler, H.; Goodman, J. W. Immunogenicity of biotinylated hapten-avidin complexes. Mol. Immunol. 1984, 21, 1055–1060.CrossRefGoogle Scholar
  16. [16]
    Zhao, J.; Mi, Y.; Liu, Y.; Feng, S. S. Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials 2012, 33, 1948–1958.CrossRefGoogle Scholar
  17. [17]
    Liu, Y.; Li, K.; Liu, B.; Feng, S. S. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials 2010, 31, 9145–9155.CrossRefGoogle Scholar
  18. [18]
    Venturelli, E.; Fabbro, C.; Chaloin, O.; Menard-Moyon, C.; Smulski, C. R.; Da Ros, T.; Kostarelos, K.; Prato, M.; Bianco, A. Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding. Small 2011, 7, 2179–2187.CrossRefGoogle Scholar
  19. [19]
    Firer, M. A.; Gellerman, G. Targeted drug delivery for cancer therapy: The other side of antibodies. J. Hematol. Oncol. 2012, 5, 70.CrossRefGoogle Scholar
  20. [20]
    Mitra, M.; Misra, R.; Harilal, A.; Sahoo, S. K.; Krishnakumar, S. Enhanced in vitro antiproliferative effects of EpCAM antibody-functionalized paclitaxel-loaded PLGA nanoparticles in retinoblastoma cells. Mol. Vis. 2011, 17, 2724–2737.Google Scholar
  21. [21]
    Winter, M. J.; Nagtegaal, I. D.; van Krieken, J. H.; Litvinov, S. V. The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology. Am. J. Pathol. 2003, 163, 2139–2148.CrossRefGoogle Scholar
  22. [22]
    Martowicz, A.; Spizzo, G.; Gastl, G.; Untergasser, G. Phenotype-dependent effects of epcam expression on growth and invasion of human breast cancer cell lines. BMC Cancer 2012, 12, 501.CrossRefGoogle Scholar
  23. [23]
    Santos, H. A.; Bimbo, L. M.; Herranz, B.; Shahbazi, M. A.; Hirvonen, J.; Salonen, J. Nanostructured porous silicon in preclinical imaging: Moving from bench to bed side. J. Mater. Res. 2013, 28, 152–164.CrossRefGoogle Scholar
  24. [24]
    Shahbazi, M. A.; Almeida, P. V.; Mäkilä, E.; Correia, A.; Ferreira, M. P.; Kaasalainen, M.; Salonen, J.; Hirvonen, J.; Santos, H. A. Poly(methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization. Macromol. Rapid Commun. 2014, 35, 624–629.CrossRefGoogle Scholar
  25. [25]
    Shahbazi, M. A.; Hamidi, M.; Mäkilä, E. M.; Zhang, H.; Almeida, P. V.; Kaasalainen, M.; Salonen, J. J.; Hirvonen, J. T.; Santos, H. A. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 2013, 34, 7776–7789.CrossRefGoogle Scholar
  26. [26]
    Shahbazi, M. A.; Herranz, B.; Santos, H. A. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter 2012, 2, 296–312.CrossRefGoogle Scholar
  27. [27]
    Barnes, T. J.; Jarvis, K. L.; Prestidge, C. A. Recent advances in porous silicon technology for drug delivery. Ther. Deliv. 2013, 4, 811–823.CrossRefGoogle Scholar
  28. [28]
    Zhang, M.; Xu, R.; Xia, X.; Yang, Y.; Gu, J.; Qin, G.; Liu, X.; Ferrari, M.; Shen, H. Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells. Biomaterials 2014, 35, 423–431.CrossRefGoogle Scholar
  29. [29]
    Tabasi, O.; Falamaki, C.; Khalaj, Z. Functionalized mesoporous silicon for targeted-drug-delivery. Colloids Surf. B-Biointerfaces 2012, 98, 18–25.CrossRefGoogle Scholar
  30. [30]
    Ferris, D. P.; Lu, J.; Gothard, C.; Yanes, R.; Thomas, C. R.; Olsen, J. C.; Stoddart, J. F.; Tamanoi, F.; Zink, J. I. Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 2011, 7, 1816–1826.CrossRefGoogle Scholar
  31. [31]
    Xu, R.; Huang, Y.; Mai, J.; Zhang, G.; Guo, X.; Xia, X.; Koay, E. J.; Qin, G.; Erm, D. R.; Li, Q. et al. Multistage vectored siRNA targeting ataxia-telangiectasia mutated for breast cancer therapy. Small 2013, 9, 1799–1808.CrossRefGoogle Scholar
  32. [32]
    Rytkönen, J.; Arukuusk, P.; Xu, W.; Kurrikoff, K.; Langel, U.; Lehto, V. P.; Närvänen, A. Porous silicon-cell penetrating peptide hybrid nanocarrier for intracellular delivery of oligonucleotides. Mol. Pharmaceutics 2013, 11, 382–390.CrossRefGoogle Scholar
  33. [33]
    Secret, E.; Smith, K.; Dubljevic, V.; Moore, E.; Macardle, P.; Delalat, B.; Rogers, M. L.; Johns, T. G.; Durand, J. O.; Cunin, F. et al. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv. Health. Mater. 2013, 2, 718–727.CrossRefGoogle Scholar
  34. [34]
    Santos, H. A.; Riikonen, J.; Salonen, J.; Mäkilä, E.; Heikkilä, T.; Laaksonen, T.; Peltonen, L.; Lehto, V. P.; Hirvonen, J. In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 2010, 6, 2721–2731.CrossRefGoogle Scholar
  35. [35]
    Shrestha, N; Shahbazi, M. A; Araújo, F; Zhang, H; Mäkilä, E; Kauppila, J; Sarmento, B; Salonen, J; Hirvonen, J; Santos, H. A. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials 2014, 35, 7172–7179.CrossRefGoogle Scholar
  36. [36]
    Shahbazi, M. A.; Almeida, P. V.; Mäkilä, E.; Kaasalainen, N.; Salonen, J.; Hirvonen, J.; Santos, H. A. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials 2014, 35, 7488–7500.CrossRefGoogle Scholar
  37. [37]
    Jalkanen, T.; Mäkilä, E.; Sakka, T.; Salonen, J.; Ogata, Y. H. Thermally promoted addition of undecylenic acid on thermally hydrocarbonized porous silicon optical reflectors. Nanoscale Res. Lett. 2012, 7, 311.CrossRefGoogle Scholar
  38. [38]
    Occhipinti, E.; Verderio, P.; Natalello, A.; Galbiati, E.; Colombo, M.; Mazzucchelli, S.; Salvade, A.; Tortora, P.; Doglia, S. M.; Prosperi, D. Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles. Nanoscale 2011, 3, 387–390.CrossRefGoogle Scholar
  39. [39]
    Danhier, F.; Feron, O.; Preat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146.CrossRefGoogle Scholar
  40. [40]
    Sasidharan, S.; Jayasree, A.; Fazal, S.; Koyakutty, M.; Nair, S. V.; Menon, D. Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells. Biomater. Sci. 2013, 1, 294–305.CrossRefGoogle Scholar
  41. [41]
    Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. (Shanghai) 2007, 39, 549–559.CrossRefGoogle Scholar
  42. [42]
    Kwon, I. K.; Lee, S. C.; Han, B.; Park, K. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release 2012, 164, 108–114.CrossRefGoogle Scholar
  43. [43]
    Shen, J.; Sun, H.; Meng, Q.; Yin, Q.; Zhang, Z.; Yu, H.; Li, Y. Simultaneous inhibition of tumor growth and angiogenesis for resistant hepatocellular carcinoma by co-delivery of sorafenib and survivin small hairpin RNA. Mol. Pharmaceutics 2014, 11, 3342–3351.CrossRefGoogle Scholar
  44. [44]
    Seidel, U. J.; Schlegel, P.; Lang, P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front. Immunol. 2013, 4, 76.CrossRefGoogle Scholar
  45. [45]
    Weiner, L. M.; Dhodapkar, M. V.; Ferrone, S. Monoclonal antibodies for cancer immunotherapy. Lancet 2009, 373, 1033–1040.CrossRefGoogle Scholar
  46. [46]
    Chowdhury, F.; Lode, H. N.; Cragg, M. S.; Glennie, M. J.; Gray, J. C. Development of immunomonitoring of antibody-dependent cellular cytotoxicity against neuroblastoma cells using whole blood. Cancer Immunol. Immunother. 2014, 63, 559–569.CrossRefGoogle Scholar
  47. [47]
    Iannello, A.; Ahmad, A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev. 2005, 24, 487–499.CrossRefGoogle Scholar
  48. [48]
    van Sorge, N. M.; van der Pol, W. L.; van de Winkel, J. G. Fcgammar polymorphisms: Implications for function, disease susceptibility and immunotherapy. Tissue Antigens 2003, 61, 189–202.CrossRefGoogle Scholar
  49. [49]
    Smith, K. A. Interleukin-2: Inception, impact, and implications. Science 1988, 240, 1169–1176.CrossRefGoogle Scholar
  50. [50]
    Strome, S. E.; Sausville, E. A.; Mann, D. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist 2007, 12, 1084–1095.CrossRefGoogle Scholar
  51. [51]
    Kawaguchi, Y.; Kono, K.; Mimura, K.; Sugai, H.; Akaike, H.; Fujii, H. Cetuximab induce antibody-dependent cellular cytotoxicity against egfr-expressing esophageal squamous cell carcinoma. Int. J. Cancer 2007, 120, 781–787.CrossRefGoogle Scholar
  52. [52]
    El-Dakdouki, M. H.; Pure, E.; Huang, X. Development of drug loaded nanoparticles for tumor targeting. Part 1: Synthesis, characterization, and biological evaluation in 2D cell cultures. Nanoscale 2013, 5, 3895–3903.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mohammad-Ali Shahbazi
    • 1
    Email author
  • Neha Shrestha
    • 1
  • Ermei Mäkilä
    • 1
    • 2
  • Francisca Araújo
    • 1
    • 3
    • 4
  • Alexandra Correia
    • 1
  • Tomás Ramos
    • 5
  • Bruno Sarmento
    • 3
    • 6
  • Jarno Salonen
    • 2
  • Jouni Hirvonen
    • 1
  • Hélder A. Santos
    • 1
    Email author
  1. 1.Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
  2. 2.Laboratory of Industrial Physics, Department of Physics and AstronomyUniversity of TurkuTurkuFinland
  3. 3.INEB — Instituto de Engenharia Biomédica, NewTherapies GroupUniversidade do PortoPortoPortugal
  4. 4.ICBAS — Instituto Ciências Biomédicas Abel SalazarUniversity of PortoPortoPortugal
  5. 5.Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  6. 6.IINFACTS — Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Superior de Ciências da Saúde-Norte, Department of Pharmaceutical SciencesCESPU, Rua Central de GandraGandraPortugal

Personalised recommendations