Nano Research

, Volume 8, Issue 4, pp 1229–1240 | Cite as

Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors

  • Eunhye Baek
  • Sebastian Pregl
  • Mehrdad Shaygan
  • Lotta Römhildt
  • Walter M. Weber
  • Thomas Mikolajick
  • Dmitry A. Ryndyk
  • Larysa Baraban
  • Gianaurelio Cuniberti
Research Article


A novel photosensitive hybrid field-effect transistor (FET) which consists of a multiple-shell of organic porphyrin film/oxide/silicon nanowires is presented. Due to the oxide shell around the nanowires, photoswitching of the current in the hybrid nanodevices is guided by the electric field effect, induced by charge redistribution within the organic film. This principle is an alternative to a photoinduced electron injection, valid for devices relying on direct junctions between organic molecules and metals or semiconductors. The switching dynamics of the hybrid nanodevices upon violet light illumination is investigated and a strong dependence on the thickness of the porphyrin film wrapping the nanowires is found. Furthermore, the thickness of the organic films is found to be a crucial parameter also for the switching efficiency of the nanowire FET, represented by the ratio of currents under light illumination (ON) and in dark conditions (OFF). We suggest a simple model of porphyrin film charging to explain the optoelectronic behavior of nanowire FETs mediated by organic film/oxide/semiconductor junctions.


hybrid nanoelectronics silicon nanowire field-effect transistors porphyrin optoelectronic switching organic/oxide/semiconductor junctions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_608_MOESM1_ESM.pdf (1.5 mb)
Supplementary material, approximately 1.46 MB.


  1. [1]
    Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592.CrossRefGoogle Scholar
  2. [2]
    Inganäs, O. Hybrid electronics and electrochemistry with conjugated polymers. Chem. Soc. Rev. 2010, 39, 2633–2642.CrossRefGoogle Scholar
  3. [3]
    Joachim, C.; Gimzewski, J. K.; Aviram, A. Electronics using hybrid/molecular and mono-molecular devices. Nature 2000, 408, 541–548.CrossRefGoogle Scholar
  4. [4]
    Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H. E.; Li, W. Large-scale complementary integrated circuits based on organic transistors. Nature 2000, 403, 521–523.CrossRefGoogle Scholar
  5. [5]
    Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Dehm, C.; Schütz, M.; Maisch, S.; Effenberger, F.; Brunnbauer M.; Stellacci, F. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 2004, 431, 963–966.CrossRefGoogle Scholar
  6. [6]
    Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338.CrossRefGoogle Scholar
  7. [7]
    Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868–5923.CrossRefGoogle Scholar
  8. [8]
    Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 1992, 92, 435–461.CrossRefGoogle Scholar
  9. [9]
    Imahori, H. Porphyrin-fullerene linked systems as artificial photosynthetic mimics. Org. Biomol. Chem. 2004, 2, 1425–1433.CrossRefGoogle Scholar
  10. [10]
    Fukuzumi, S. Development of bioinspired artificial photosynthetic systems. Phys. Chem. Chem. Phys. 2008, 10, 2283–2297.CrossRefGoogle Scholar
  11. [11]
    Ozin, G. A.; Manners, I.; Fournier-Bidoz, S.; Arsenault, A. Dream nanomachines. Adv. Mater. 2005, 17, 3011–3018.CrossRefGoogle Scholar
  12. [12]
    Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2009, 451, 809–813.CrossRefGoogle Scholar
  13. [13]
    Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science 2008, 319, 807–810.CrossRefGoogle Scholar
  14. [14]
    Dawson, J. H. Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 1988, 240, 433–439.CrossRefGoogle Scholar
  15. [15]
    Gust, D.; Moore, T. A.; Moore, A. L. Molecular mimicry of photosynthetic energy and electron transfer. Acc. Chem. Res. 1993, 26, 198–205.CrossRefGoogle Scholar
  16. [16]
    Martínez-Díaz, M. V.; de la Torrea, G.; Torres, T. Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem. Commun. 2010, 46, 7090–7108.CrossRefGoogle Scholar
  17. [17]
    Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 1999, 11, 605–625.CrossRefGoogle Scholar
  18. [18]
    Liu, Z. M.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Molecular memories that survive silicon device processing and real-world operation. Science 2003, 302, 1543–1545.CrossRefGoogle Scholar
  19. [19]
    Seol, M. L.; Choi, S. J.; Kim, C. H.; Moon, D. I.; Choi, Y. K. Porphyrin silicon hybrid field-effect transistor with individually addressable top-gate structure. ACS Nano 2012, 6, 183–189.CrossRefGoogle Scholar
  20. [20]
    Star, A.; Lu, Y.; Bradley, K.; Grüner, G. Nanotube optoelectronic memory devices. Nano Lett. 2004, 4, 1587–1591.CrossRefGoogle Scholar
  21. [21]
    Li, C.; Ly, J.; Lei, B.; Fan, W.; Zhang, D. H.; Han, J.; Meyyappan, M.; Thompson, M.; Zhou, C. W. Data storage studies on nanowire transistors with self-assembled porphyrin molecules. J. Phys. Chem. B 2004, 108, 9646–9649.CrossRefGoogle Scholar
  22. [22]
    Choi, S. J.; Lee, Y. C.; Seol, M. L.; Ahn, J. H.; Kim, S.; Moon, D. I.; Han, J. W.; Mann, S.; Yang, J. W.; Choi, Y. K. Bio-inspired complementary photoconductor by porphyrin-coated silicon nanowires. Adv. Mater. 2011, 23, 3979–3983.CrossRefGoogle Scholar
  23. [23]
    Winkelmann, C. B.; Ionica, I.; Chevalier, X.; Royal, G.; Bucher, C.; Bouchiat, V. Optical switching of porphyrin-coated silicon nanowire field effect transistors. Nano Lett. 2007, 7, 1454–1458.CrossRefGoogle Scholar
  24. [24]
    Seol, M. L.; Choi, S. J.; Choi, J. M.; Ahn, J. H.; Choi, Y. K. Hybrid porphyrin silicon nanowire field-effect transistor by opto-electrical excitation. ACS Nano 2012, 6, 7885–7892.CrossRefGoogle Scholar
  25. [25]
    Borghetti, J.; Derycke, V.; Lenfant, S.; Chenevier, P.; Filoramo, A.; Goffman, M.; Vuillaume, D.; Bourgoin, J. P. Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors. Adv. Mater. 2006, 18, 2535–2540.CrossRefGoogle Scholar
  26. [26]
    Léonard, F.; Talin, A. A. Electrical contacts to one- and two-dimensional nanomaterials. Nat. Nanotechnol. 2011, 6, 773–783.CrossRefGoogle Scholar
  27. [27]
    Pregl, S.; Weber, W. M.; Nozaki, D.; Kunstmann, J.; Baraban, L.; Opitz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381–388.CrossRefGoogle Scholar
  28. [28]
    Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Chèze, C.; Riechert, H.; Lugli, P. et al. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2006, 6, 2660–2666.CrossRefGoogle Scholar
  29. [29]
    Nozaki, D.; Kunstmann, J.; Zörgiebel, F.; Weber, W. M.; Mikolajick, T.; Cuniberti, G. Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications. Nanotechnology 2011, 22, 325703.CrossRefGoogle Scholar
  30. [30]
    Martin, D.; Heinzig, A.; Grube, M.; Geelhaar, L.; Mikolajick, T.; Riechert, H.; Weber, W. M. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Phys. Rev. Lett. 2011, 107, 216807.CrossRefGoogle Scholar
  31. [31]
    Robinson, G. W.; Frosch R. P. Electronic excitation transfer and relaxation. J. Chem. Phys. 1963, 38, 1187–1203.CrossRefGoogle Scholar
  32. [32]
    Liao, M. S.; Scheinera, S. Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn. J. Chem. Phys. 2002, 117, 205–219.CrossRefGoogle Scholar
  33. [33]
    Blase, X.; Attaccalite, C.; Olevano, V. First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications. Phys. Rev. B 2011, 83, 115103.CrossRefGoogle Scholar
  34. [34]
    Refaely-Abramson, S.; Baer, R.; Kronik, L. Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys. Rev. B 2011, 84, 075144.CrossRefGoogle Scholar
  35. [35]
    Savenije, T. J.; Goossens, A. Hole transport in porphyrin thin films. Phys. Rev. B 2001, 64, 115323.CrossRefGoogle Scholar
  36. [36]
    Kerp, H. R.; Donker, H.; Koehorst, R. B. M.; Schaafsma, T. J.; van Faassen, E. E. Exciton transport in organic dye layers for photovoltaic applications. Chem. Phys. Lett. 1998, 298, 302–308.CrossRefGoogle Scholar
  37. [37]
    Lyons, B. P.; Monkman, A. P. The role of exciton diffusion in energy transfer between polyfluorene and tetraphenyl porphyrin. Phys. Rev. B 2005, 71, 235201.CrossRefGoogle Scholar
  38. [38]
    Yamashifa, K.; Harima, Y.; Iwashima, H. Evaluation of exciton diffusion lengths and apparent barrier widths for metal/porphyrin Schottky barrier cells by use of the optical filtering effect. J. Phys. Chem. 1987, 91, 3055–3059.CrossRefGoogle Scholar
  39. [39]
    Cerullo, G.; Stagira, S.; Zavelani-Rossi, M.; De Silvestri, S.; Virgili, T.; Lidzey, D. G.; Bradley, D. D. C. Ultrafast Förster transfer dynamics in tetraphenylporphyrin doped poly(9,9-dioctylfluorene). Chem. Phys. Lett. 2001, 335, 27–33.CrossRefGoogle Scholar
  40. [40]
    Huijser, A.; Savenije, T. J.; Kroeze, J. E.; Siebbeles, L. D. A. Exciton diffusion and interfacial charge separation in meso-tetraphenylporphyrin/TiO2 bilayers: Effect of ethyl substituents. J. Phys. Chem. B 2005, 109, 20166–20173.CrossRefGoogle Scholar
  41. [41]
    Ghezzi, D.; Antognazza, M. R.; Maccarone, R.; Bellani, S.; Lanzarini, E.; Martino, N.; Mete, M.; Pertile, G.; Bisti, S.; Lanzani G. et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics 2013, 7, 400–406.CrossRefGoogle Scholar
  42. [42]
    Weber, W. M.; Duesberg, G. S.; Graham, A. P.; Liebau, M.; Unger, E.; Cheze, C.; Geelhaar, L.; Lugli, P.; Riechert, H.; Kreupl, F. Silicon nanowires: Catalytic growth and electrical characterization. Phys. Stat. Sol. B 2006, 243, 3340–3345.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eunhye Baek
    • 1
  • Sebastian Pregl
    • 1
    • 2
  • Mehrdad Shaygan
    • 3
  • Lotta Römhildt
    • 1
  • Walter M. Weber
    • 2
    • 4
  • Thomas Mikolajick
    • 2
    • 4
  • Dmitry A. Ryndyk
    • 1
    • 2
    • 5
  • Larysa Baraban
    • 1
  • Gianaurelio Cuniberti
    • 1
    • 2
    • 5
  1. 1.Institute for Materials Science and Max Bergmann Center of BiomaterialsTU DresdenDresdenGermany
  2. 2.Center for Advancing Electronics DresdenTU DresdenDresdenGermany
  3. 3.Division of IT Convergence EngineeringPohang University of Science and TechnologyPohangKorea
  4. 4.NaMLab GmbHDresdenGermany
  5. 5.Dresden Center for Computational Materials ScienceTU DresdenDresdenGermany

Personalised recommendations