Nano Research

, Volume 8, Issue 1, pp 156–164 | Cite as

Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries

  • Xiaopeng Han
  • Fangyi Cheng
  • Chengcheng Chen
  • Yuxiang Hu
  • Jun Chen
Research Article


Through in situ redox deposition and growth of MnO2 nanostructures on hierarchically porous carbon (HPC), a MnO2/HPC hybrid has been synthesized and employed as cathode catalyst for non-aqueous Li-O2 batteries. Owing to the mild synthetic conditions, MnO2 was uniformly distributed on the surface of the carbon support, without destroying the hierarchical porous nanostructure. As a result, the as-prepared MnO2/HPC nanocomposite exhibits excellent Li-O2 battery performance, including low charge overpotential, good rate capacity and long cycle stability up to 300 cycles with controlling capacity of 1,000 mAh·g−1. A combination of the multi-scale porous network of the shell-connected carbon support and the highly dispersed MnO2 nanostructure benefits the transportation of ions, oxygen and electrons and contributes to the excellent electrode performance.


lithium-oxygen batteries manganese oxide nanocomposite catalyst oxygen electrochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_604_MOESM1_ESM.pdf (3.4 mb)
Supplementary material, approximately 3.39 MB.


  1. [1]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  2. [2]
    Black, R.; Adams, B.; Nazar, L. F. Non-aqueous and hybrid Li-O2 batteries. Adv. Energy Mater. 2012, 2, 801–815.CrossRefGoogle Scholar
  3. [3]
    Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.CrossRefGoogle Scholar
  4. [4]
    Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev., in press, DOI: 10.1039/C4CS00218K.Google Scholar
  5. [5]
    Li, F. J.; Zhang, T.; Zhou, H. S. Challenges of non-aqueous Li-O2 batteries: Electrolytes, catalysts, and anodes. Energy Environ. Sci. 2013, 6, 1125–1141.CrossRefGoogle Scholar
  6. [6]
    Cao, R. G.; Lee, J. S.; Liu, M. L.; Cho, J. Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2012, 2, 816–829.CrossRefGoogle Scholar
  7. [7]
    Guo, Z. Y.; Zhou, D. D.; Dong, X. L.; Qiu, Z. J.; Wang, Y. G.; Xia, Y. Y. Ordered hierarchical mesoporous/macroporous carbon: A high-performance catalyst for rechargeable Li-O2 batteries. Adv. Mater. 2013, 25, 5668–5672.CrossRefGoogle Scholar
  8. [8]
    Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.Google Scholar
  9. [9]
    Yan, Y.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2014, 4, 1301584.Google Scholar
  10. [10]
    Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Qi, D. P.; Leow, W. R.; Wei, J. Q.; Yin, S. Y.; Dong, Z. L.; Yazami, R.; Chen, Z. et al. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew. Chem. Int. Ed., in press, DOI: 10.1039/C4CS00218K.Google Scholar
  11. [11]
    Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Wei, J. Q.; Tam, H. L.; Chandran, B. K.; Dong, Z. L.; Chen, Z.; Chen, X. D. Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 2014, 26, 6111–6118.CrossRefGoogle Scholar
  12. [12]
    Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.CrossRefGoogle Scholar
  13. [13]
    Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.CrossRefGoogle Scholar
  14. [14]
    Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.CrossRefGoogle Scholar
  15. [15]
    Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.CrossRefGoogle Scholar
  16. [16]
    Wu, J. B.; Yang, H. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res. 2011, 4, 72–82.CrossRefGoogle Scholar
  17. [17]
    Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao, X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519–1527.CrossRefGoogle Scholar
  18. [18]
    Chen, S. G.; Wei, Z. D.; Qi, X. Q.; Dong, L. C.; Guo, Y. G.; Wan, L. J.; Shao, Z. G.; Li, L. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity. J. Am. Chem. Soc. 2012, 134, 13252–13255.CrossRefGoogle Scholar
  19. [19]
    Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2013, 52, 3465–3468.CrossRefGoogle Scholar
  20. [20]
    Débart, A.; Paterson, A. J.; Bao, J. L.; Bruce, P. G. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 4521–4524.CrossRefGoogle Scholar
  21. [21]
    Wang, H. L.; Yang, Y.; Liang, Y. Y.; Zheng, G. Y.; Li, Y. G.; Cui, Y.; Dai, H. J. Rechargeable Li-O2 batteries with a covalently coupled MnCo2O4-graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 2012, 5, 7931–7935.CrossRefGoogle Scholar
  22. [22]
    Cao, Y.; Wei, Z. K.; He, J.; Zang, J.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance. Energy Environ. Sci. 2012, 5, 9765–9768.CrossRefGoogle Scholar
  23. [23]
    Xu, J. J.; Xu, D.; Wang, Z. L.; Wang, H. G.; Zhang, L. L.; Zhang, X. B. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem. Int. Ed. 2013, 52, 3887–3890.CrossRefGoogle Scholar
  24. [24]
    Cheng, F. Y.; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.CrossRefGoogle Scholar
  25. [25]
    Feng, J.; Liang, Y. Y.; Wang, H. L.; Li, Y. G.; Zhang, B.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Res. 2012, 5, 718–725.CrossRefGoogle Scholar
  26. [26]
    Han, X. P.; Hu, Y. X.; Yang, J. G.; Cheng, F. Y.; Chen, J. Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries. Chem. Commun. 2014, 50, 1497–1499.CrossRefGoogle Scholar
  27. [27]
    Zhang, G. Q.; Xia, B. Y.; Xiao, C.; Yu, L.; Wang, X.; Xie, Y.; Lou, X. W. General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew. Chem. Int. Ed. 2013, 52, 8643–8647.CrossRefGoogle Scholar
  28. [28]
    Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem. Int. Ed. 2014, 53, 442–446.CrossRefGoogle Scholar
  29. [29]
    Sun, B.; Liu, H.; Munroe, P.; Ahn, H.; Wang, G. X. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. Nano Res. 2012, 5, 460–469.CrossRefGoogle Scholar
  30. [30]
    Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.CrossRefGoogle Scholar
  31. [31]
    Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium-air battery. Nat. Chem. 2012, 4, 579–585.CrossRefGoogle Scholar
  32. [32]
    Chen, P.; Xiao, T. Y.; Qian, Y. H.; Li, S. S.; Yu, S. H. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater. 2013, 25, 3192–3196.CrossRefGoogle Scholar
  33. [33]
    Liang, J.; Du, X.; Gibson, C.; Du, X. W.; Qiao, S. Z. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 2013, 25, 6226–6231.CrossRefGoogle Scholar
  34. [34]
    Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.CrossRefGoogle Scholar
  35. [35]
    McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshøj, J. S.; Nørskov, J. K.; Luntz, A. C. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001.CrossRefGoogle Scholar
  36. [36]
    Gallant, B. M.; Mitchell, R. R.; Kwabi, D. G.; Zhou, J. G.; Zuin, L.; Thompson, C. V.; Shao-Horn, Y. Chemical and morphological changes of Li-O2 battery electrodes upon cycling. J. Phys. Chem. C 2012, 116, 20800–20805.CrossRefGoogle Scholar
  37. [37]
    Liu, J. P.; Jiang, J.; Cheng, C. W.; Li, H. X.; Zhang, J. X.; Gong, H.; Fan, H. J. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials. Adv. Mater. 2011, 23, 2076–2081.CrossRefGoogle Scholar
  38. [38]
    Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem. Int. Ed. 2013, 52, 2474–2477.CrossRefGoogle Scholar
  39. [39]
    Han, X. P.; Cheng, F. Y.; Zhang, T. R.; Yang, J. G.; Hu, Y. X.; Chen, J. Hydrogenated uniform Pt clusters supported on porous CaMnO3 as a bifunctional electrocatalyst for enhanced oxygen reduction and evolution. Adv. Mater. 2014, 26, 2047–2051.CrossRefGoogle Scholar
  40. [40]
    Cui, Y. M.; Wen, Z. Y.; Liang, X.; Lu, Y.; Jin, J.; Wu, M. F.; Wu, X. W. A tubular polypyrrole based air electrode with improved O2 diffusivity for Li-O2 batteries. Energy Environ. Sci. 2012, 5, 7893–7897.CrossRefGoogle Scholar
  41. [41]
    Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.CrossRefGoogle Scholar
  42. [42]
    El-Deab, M. S.; Ohsaka, T. Manganese oxide nanoparticles electrodeposited on platinum are superior to platinum for oxygen reduction. Angew. Chem. Int. Ed. 2006, 45, 5963–5966.CrossRefGoogle Scholar
  43. [43]
    Cheng, F. Y.; Su, Y.; Liang, J.; Tao, Z. L.; Chen, J. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898–905.CrossRefGoogle Scholar
  44. [44]
    Roche, I.; Chaînet, E.; Chatenet, M.; Vondrák, J. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism. J. Phys. Chem. C 2007, 111, 1434–1443.CrossRefGoogle Scholar
  45. [45]
    Han, X. P.; Zhang, T. R.; Du, J.; Cheng, F. Y.; Chen, J. Porous calcium-manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chem. Sci. 2013, 4, 368–376.CrossRefGoogle Scholar
  46. [46]
    Black, R.; Lee, J. H.; Adams, B.; Mims, C. A.; Nazar, L. F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew. Chem. Int. Ed. 2013, 52, 392–396.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Collaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjinChina

Personalised recommendations