Advertisement

Nano Research

, Volume 8, Issue 1, pp 129–139 | Cite as

Microporous bamboo biochar for lithium-sulfur batteries

  • Xingxing Gu
  • Yazhou Wang
  • Chao Lai
  • Jingxia Qiu
  • Sheng Li
  • Yanglong Hou
  • Wayde Martens
  • Nasir Mahmood
  • Shanqing Zhang
Research Article

Abstract

Being simple, inexpensive, scalable and environmentally friendly, microporous biomass biochars have been attracting enthusiastic attention for application in lithium-sulfur (Li-S) batteries. Herein, porous bamboo biochar is activated via a KOH/annealing process that creates a microporous structure, boosts surface area and enhances electronic conductivity. The treated sample is used to encapsulate sulfur to prepare a microporous bamboo carbon-sulfur (BC-S) nanocomposite for use as the cathode for Li-S batteries for the first time. The BC-S nanocomposite with 50 wt.% sulfur content delivers a high initial capacity of 1,295 mA·h/g at a low discharge rate of 160 mA/g and high capacity retention of 550 mA·h/g after 150 cycles at a high discharge rate of 800 mA/g with excellent coulombic efficiency (⩾95%). This suggests that the BC-S nanocomposite could be a promising cathode material for Li-S batteries.

Keywords

biochars lithium-sulfur batteries microporous structure bamboo carbon-sulfur composites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_601_MOESM1_ESM.pdf (664 kb)
Supplementary material, approximately 664 KB.

References

  1. [1]
    Peramunage, D.; Licht, S. A solid sulfur cathode for aqueous batteries. Science 1993, 261, 1029–1032.CrossRefGoogle Scholar
  2. [2]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nature Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  3. [3]
    Ji, X. L.; Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 2010, 20, 9821–9826.CrossRefGoogle Scholar
  4. [4]
    Zhang, J.; Xiang, J. Y.; Dong, Z. M.; Liu, Y.; Wu, Y. S.; Xu, C. M.; Du, G. H. Biomass derived activated carbon with 3D connected architecture for rechargeable lithium-sulfur batteries. Electrochim. Acta 2014, 116, 146–151.CrossRefGoogle Scholar
  5. [5]
    Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 2011, 50, 5904–5908.CrossRefGoogle Scholar
  6. [6]
    Zhao, S. R.; Li, C. M.; Wang, W. K.; Zhang, H.; Gao, M. Y.; Xiong, X.; Wang, A. B.; Yuan, K. G.; Huang, Y. Q.; Wang, F. A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium-sulfur batteries. J.Mater. Chem. A 2013, 1, 3334–3339.CrossRefGoogle Scholar
  7. [7]
    Jeddi, K.; Ghaznavi, M.; Chen, P. A novel polymer electrolyte to improve the cycle life of high performance lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 2769–2772.CrossRefGoogle Scholar
  8. [8]
    Lee, J.-H.; Lee, H.-Y.; Oh, S.-M.; Lee, S.-J.; Lee, K.-Y.; Lee, S.-M. Effect of carbon coating on electrochemical performance of hard carbons as anode materials for lithium-ion batteries. J. Power Sources 2007, 166, 250–254.CrossRefGoogle Scholar
  9. [9]
    Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 2014, 26, 625–631.CrossRefGoogle Scholar
  10. [10]
    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulfur cathode for lithium-sulfur batteries. Nature Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  11. [11]
    Xu, G. L.; Xu, Y. F.; Fang, J. C.; Peng, X. X.; Fu, F.; Huang, L.; Li, J. T.; Sun, S. G. Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2013, 5, 10782–10793.CrossRefGoogle Scholar
  12. [12]
    He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS Nano 2013, 7, 10920–10930.CrossRefGoogle Scholar
  13. [13]
    Zhang, W. H.; Qiao, D.; Pan, J. X.; Cao, Y. L.; Yang, H. X.; Ai, X. P. A Li+-conductive microporous carbon-sulfur composite for Li-S batteries. Electrochim. Acta 2013, 87, 497–502.CrossRefGoogle Scholar
  14. [14]
    Xi, K.; Cao, S.; Peng, X. Y.; Ducati, C.; Kumar, R. V.; Cheetham, A. K. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulfur batteries. Chem. Commun. 2013, 49, 2192–2194.CrossRefGoogle Scholar
  15. [15]
    Tao, X. Y.; Chen, X. R.; Xia, Y.; Huang, H.; Gan, Y. P.; Wu, R.; Chen, F.; Zhang, W. K. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 3295–3301.CrossRefGoogle Scholar
  16. [16]
    Brun, N.; Sakaushi, K.; Yu, L. H.; Giebeler, L.; Eckert, J.; Titirici, M. M. Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries. Phys. Chem. Chem. Phys. 2013, 15, 6080–6087.CrossRefGoogle Scholar
  17. [17]
    Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.CrossRefGoogle Scholar
  18. [18]
    Zhou, X. H.; Li, L. F.; Dong, S. M.; Chen, X.; Han, P. X.; Xu, H. X.; Yao, J. H.; Shang, C. Q.; Liu, Z. H.; Cui, G. L. A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. J. Solid State Electrochem. 2012, 16, 877–882.CrossRefGoogle Scholar
  19. [19]
    Wei, S. C.; Zhang, H.; Huang, Y. Q.; Wang, W. K.; Xia, Y. Z.; Yu, Z. B. Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium-sulfur batteries. Energy Environ. Sci. 2011, 4, 736–740.CrossRefGoogle Scholar
  20. [20]
    Chung, S. H.; Manthiram, A. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells. ChemSusChem 2014, 7, 1655–1661.CrossRefGoogle Scholar
  21. [21]
    Tao, X. Y.; Zhang, J. T.; Xia, Y.; Huang, H.; Du, J.; Xiao, H.; Zhang, W. K.; Gan, Y. P. Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li-S batteries. J. Mater. Chem. A 2014, 2, 2290–2296.CrossRefGoogle Scholar
  22. [22]
    Moreno, N.; Caballero, A.; Hernán, L.; Morales, J. Lithium-sulfur batteries with activated carbons derived from olive stones. Carbon 2014, 70, 241–248.CrossRefGoogle Scholar
  23. [23]
    Tan, Z. Q.; Sun, L. S.; Xiang, J.; Zeng, H. C.; Liu, Z. H.; Hu, S.; Qiu, J. R. Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon 2012, 50, 362–371.CrossRefGoogle Scholar
  24. [24]
    Kannan, N.; Sundaram, M. M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—A comparative study. Dyes Pigm. 2001, 51, 25–40.CrossRefGoogle Scholar
  25. [25]
    Kim, Y. J.; Lee, B. J.; Suezaki, H.; Chino, T.; Abe, Y.; Yanagiura, T.; Park, K. C.; Endo, M. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon 2006, 44, 1592–1595.CrossRefGoogle Scholar
  26. [26]
    Jiang, J.; Zhu, J. H.; Ai, W.; Fan, Z. X.; Shen, X. N.; Zou, C. J.; Liu, J. P.; Zhang, H.; Yu, T. Evolution of disposable bamboo chopsticks into uniform carbon fibers: A smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy Environ. Sci. 2014, 7, 2670–2679.CrossRefGoogle Scholar
  27. [27]
    Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.CrossRefGoogle Scholar
  28. [28]
    Wang, J. C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725.CrossRefGoogle Scholar
  29. [29]
    Shinkarev, V. V.; Fenelonov, V. B.; Kuvshinov, G. G. Sulfur distribution on the surface of mesoporous nanofibrous carbon. Carbon 2003, 41, 295–302.CrossRefGoogle Scholar
  30. [30]
    Zhang, Y. Z.; Liu, S.; Li, G. C.; Li, G. R.; Gao, X. P. Sulfur/polyacrylonitrile/carbon multi-composites as cathode materials for lithium/sulfur battery in the concentrated electrolyte. J. Mater. Chem. A 2014, 2, 4652–4659.CrossRefGoogle Scholar
  31. [31]
    Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 2013, 7, 5367–5375.CrossRefGoogle Scholar
  32. [32]
    Li, D.; Han, F.; Wang, S.; Cheng, F.; Sun, Q.; Li, W. C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery. ACS Appl. Mater. Interfaces 2013, 5, 2208–2213.CrossRefGoogle Scholar
  33. [33]
    Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. ACS Nano 2014, 8, 9295–9303.CrossRefGoogle Scholar
  34. [34]
    Huang, J. Q.; Liu, X. F.; Zhang, Q.; Chen, C. M.; Zhao, M. Q.; Zhang, S. M.; Zhu, W. C.; Qian, W. Z.; Wei, F. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from −40 to 60 °C. Nano Energy 2013, 2, 314–321.CrossRefGoogle Scholar
  35. [35]
    Ding, B.; Yuan, C. Z.; Shen, L. F.; Xu, G. Y.; Nie, P.; Zhang, X. G. Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries. Chem. —Eur. J. 2013, 19, 1013–1019.CrossRefGoogle Scholar
  36. [36]
    Zhang, S. S. Sulfurized carbon: A class of cathode materials for high performance lithium/sulfur batteries. Front. Energy Res. 2013, 1, 1–9.Google Scholar
  37. [37]
    Wang, Y. X.; Huang, L.; Sun, L. C.; Xie, S. Y.; Xu, G. L.; Chen, S. R.; Xu, Y. F.; Li, J. T.; Chou, S. L.; Dou, S. X.; et al. Facile synthesis of a interleaved expanded graphite-embedded sulfur nanocomposite as cathode of Li-S batteries with excellent lithium storage performance. J. Mater. Chem. 2012, 22, 4744–4750.CrossRefGoogle Scholar
  38. [38]
    Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulfur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulfur batteries. Nature Commun. 2013, 4, 1331–1336.CrossRefGoogle Scholar
  39. [39]
    Wang, W. G.; Wang, X.; Tian, L. Y.; Wang, Y. L.; Ye, S. H. In situ sulfur deposition route to obtain sulfur-carbon composite cathodes for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 4316–4323.CrossRefGoogle Scholar
  40. [40]
    Ahn, W.; Kim, K.-B.; Jung, K.-N.; Shin, K.-H.; Jin, C.-S. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J. Power Sources 2012, 202, 394–399.CrossRefGoogle Scholar
  41. [41]
    Choi, H. S.; Oh, J. Y.; Park, C. R. One step synthesis of sulfur-carbon nanosheet hybrids via a solid solvothermal reaction for lithium sulfur batteries. RSC Adv. 2014, 4, 3684–3690.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xingxing Gu
    • 1
  • Yazhou Wang
    • 1
  • Chao Lai
    • 1
  • Jingxia Qiu
    • 1
  • Sheng Li
    • 1
  • Yanglong Hou
    • 2
  • Wayde Martens
    • 3
  • Nasir Mahmood
    • 2
  • Shanqing Zhang
    • 1
  1. 1.Centre for Clean Environment and Energy, Environmental Futures Research Institute, Griffith School of Environment, Gold Coast CampusGriffith UniversityGold CoastAustralia
  2. 2.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  3. 3.Science and Engineering FacultyQueensland University of TechnologyGold CoastAustralia

Personalised recommendations