Advertisement

Nano Research

, Volume 8, Issue 4, pp 1180–1188 | Cite as

Nanoparticles-based nanochannels assembled on a plastic flexible substrate for label-free immunosensing

  • Alfredo de la Escosura-Muñiz
  • Marisol Espinoza-Castañeda
  • Madoka Hasegawa
  • Laetitia Philippe
  • Arben Merkoçi
Research Article

Abstract

A novel, cheap, disposable and single-use nanoparticles-based nanochannel platform assembled on a flexible substrate for label-free immunosensing is presented. This sensing platform is formed by the dip-coating of a homogeneous and assembled monolayer of carboxylated polystyrene nanospheres (PS, 200 and 500 nm-sized) onto the working area of flexible screen-printed indium tin oxide/polyethylene terephthalate (ITO/PET) electrodes. The spaces between the self-assembled nanospheres generate well-ordered nanochannels, with inter-PS particles distances of around 65 and 24 nm respectively. The formed nanochannels are used for the effective immobilization of antibodies and subsequent protein detection based on the monitoring of [Fe(CN)6]4− flow through diffusion and the decrease in the differential pulse voltammetric signal upon immunocomplex formation. The obtained sensing system is nanochannel-size dependent and allows human immunoglobulin G (IgG) (chosen as a model analyte) to be detected at levels of 580 ng/mL. The system also exhibits an excellent specificity against other proteins present in real samples and shows good performance with a human urine sample. The developed device represents an integrated and simple biodetection system which overcomes many of the limitations of previously reported nanochannels-based approaches and can be extended in the future to several other immuno and DNA detection systems.

Keywords

nanochannel dip-coating electrochemical biosensor label-free immunosensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    De la Escosura-Muñiz, A.; Merkoçi, A. Nanochannels preparation and application in biosensing. ACS Nano 2012, 6, 7556–7583.CrossRefGoogle Scholar
  2. [2]
    Bayley, H.; Cremer, P. S. Stochastic sensors inspired by biology. Nature 2001, 413, 226–230.CrossRefGoogle Scholar
  3. [3]
    Coulter, W. H. High speed automatic blood cell counter and cell size analyzer. Proc. Natl. Electron. Conf. 1956, 12, 1034–1040.Google Scholar
  4. [4]
    Howorka, S.; Cheley, S.; Bayley, H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotechnol. 2001, 19, 636–639.CrossRefGoogle Scholar
  5. [5]
    Stoddart, D.; Heron, A. J.; Mikhailova, E.; Maglia, G.; Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. USA 2009, 106, 7702–7707.CrossRefGoogle Scholar
  6. [6]
    Purnell, R. F.; Schmidt, J. J. Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. ACS Nano 2009, 3, 2533–2538.CrossRefGoogle Scholar
  7. [7]
    Wang, Y.; Zheng, D. L.; Tan, Q. L.; Wang, M. X.; Gu, L. Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol. 2011, 6, 668–674.CrossRefGoogle Scholar
  8. [8]
    Rotem, D.; Jayasinghe, L.; Salichou, M.; Bayley, H. Protein detection by nanopores equipped with aptamers. J. Am. Chem. Soc. 2012, 134, 2781–2787.CrossRefGoogle Scholar
  9. [9]
    Hurt, N.; Wang, H. Y.; Akeson, M.; Lieberman, K. R. Specific nucleotide binding and rebinding to individual DNA polymerase complexes captured on a nanopore. J. Am. Chem. Soc. 2009, 131, 3772–3378.CrossRefGoogle Scholar
  10. [10]
    Stefureac, R.; Waldner, L.; Howard, P.; Lee, J. S. Nanopore analysis of a small 86-residue protein. Small 2008, 4, 59–63.CrossRefGoogle Scholar
  11. [11]
    Menard, L. D.; Ramsey, J. M. Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Lett. 2011, 11, 512–517.CrossRefGoogle Scholar
  12. [12]
    Foong, T. R. B.; Sellinger, A.; Hu, X. Origin of the bottlenecks in preparing anodized aluminum oxide [AAO]_templates on ITO glass. ACS Nano 2008, 2, 2250–2256.CrossRefGoogle Scholar
  13. [13]
    Alvarez, S. D.; Li, C. P.; Chiang, C. E.; Schuller, I. K.; Sailor, M. J. A label-free porous alumina interferometric immunosensor. ACS Nano 2009, 3, 3301–3307.CrossRefGoogle Scholar
  14. [14]
    Santos, A.; Balderrama, V. S.; Alba, M.; Formentín, P.; Ferré-Borrull, J.; Pallarès, J.; Marsal, L. F. Nanoporous anodic alumina barcodes: Toward smart optical biosensors. Adv. Mater. 2012, 24, 1050–1054.CrossRefGoogle Scholar
  15. [15]
    De la Escosura-Muñiz, A.; Merkoçi, A. Label-free voltammetric immunosensor using a nanoporous membrane based platform. Electrochem. Commun. 2010, 12, 859–863.CrossRefGoogle Scholar
  16. [16]
    De la Escosura-Muñiz, A.; Mekoçi, A. Nanoparticle based enhancement of electrochemical DNA hybridization signal using nanoporous electrodes. Chem. Commun. 2010, 46, 9007–9009.CrossRefGoogle Scholar
  17. [17]
    De la Escosura-Muñiz, A.; Chunglok, W.; Surareungchai, W.; Merkoçi, A. Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosens. Bioelectron. 2013, 40, 24–31.CrossRefGoogle Scholar
  18. [18]
    De la Escosura-Muñiz, A.; Merkoçi, A. A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood. Small 2011, 7, 675–682.CrossRefGoogle Scholar
  19. [19]
    Walcarius, A.; Kuhn, A. Ordered porous thin films in electrochemical analysis. Trends Anal. Chem. 2008, 27, 593–603.CrossRefGoogle Scholar
  20. [20]
    Qian, L. H.; Mookherjee, R. Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering. Nano Res. 2011, 4, 1117–1128.CrossRefGoogle Scholar
  21. [21]
    Walcarius, A.; Sibottier, E.; Etienne, M.; Ghanbaja, J. Electrochemically assisted self-assembly of mesoporous silica thin films. Nat. Mater. 2007, 6, 602–608.CrossRefGoogle Scholar
  22. [22]
    Wan, Y.; Zhao, D. Y. On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 2007, 107, 2821–2860.CrossRefGoogle Scholar
  23. [23]
    Zhu, K. K.; Wang, D. H.; Liu, J. Self-assembled materials for catalysis. Nano Res. 2009, 2, 1–29.CrossRefGoogle Scholar
  24. [24]
    Chang, H.; Joo, S. H.; Pak, C. Synthesis and characterization of mesoporous carbon for fuel cell applications. J. Mater. Chem. 2007, 17, 3078–3088.CrossRefGoogle Scholar
  25. [25]
    Guérin, V. M.; Elias, J.; Nguyen, T. T.; Philippe, L.; Pauporté, T. Ordered networks of ZnO-nanowire hierarchical urchin-like structures for improved dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2012, 14, 12948–12955.CrossRefGoogle Scholar
  26. [26]
    Elias, J.; Lévy-Clément, C.; Bechelany, M.; Michler, J.; Wang, G. Y.; Wang, Z.; Philippe, L. Hollow urchin-like ZnO thin films by electrochemical deposition. Adv. Mater. 2010, 22, 1607–1612.CrossRefGoogle Scholar
  27. [27]
    Amit, A. G.; Mariuzza, R. A.; Phillips, S. E.; Poljak, R. J. Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science 1986, 233, 747–753.CrossRefGoogle Scholar
  28. [28]
    Gonzalez-Quintela, A.; Alende, R.; Gude, F.; Campos, J.; Rey, J.; Meijide, L. M.; Fernandez-Merino, C.; Vidal, C. Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities. Clin. Exp. Immunol. 2008, 151, 42–50.CrossRefGoogle Scholar
  29. [29]
    McPherson, R. A.; Massey, H. D. Laboratory evaluation of immunoglobulin function and humoral immunity, Chapter 46. In Henry’s Clinical Diagnosis and Management by Laboratory Methods, 22nd ed.; MacPherson, R. A.; Pincus, M. R., Eds.; Saunders: Philadelphia, 2011.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alfredo de la Escosura-Muñiz
    • 1
  • Marisol Espinoza-Castañeda
    • 1
  • Madoka Hasegawa
    • 2
  • Laetitia Philippe
    • 2
  • Arben Merkoçi
    • 1
    • 3
  1. 1.ICN2-Nanobioelectronics & Biosensors GroupInstitut Catala de Nanociencia i Nanotecnologia, Campus UABBellaterra (Barcelona)Spain
  2. 2.EMPASwiss Federal Laboratories for Materials Science and TechnologyThunSwitzerland
  3. 3.ICREA-Institucio Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations