Nano Research

, Volume 8, Issue 1, pp 23–39 | Cite as

A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts

Review Article


Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe-based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.


oxygen evolution reaction electrocatalysis nickel-iron water splitting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and non legacy worlds. Chem. Rev. 2010, 110, 6474–6502.CrossRefGoogle Scholar
  2. [2]
    Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.CrossRefGoogle Scholar
  3. [3]
    Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.CrossRefGoogle Scholar
  4. [4]
    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.CrossRefGoogle Scholar
  5. [5]
    Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.CrossRefGoogle Scholar
  6. [6]
    Walter, M. G.; Warren, E. L.; Mckone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.CrossRefGoogle Scholar
  7. [7]
    Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nanocarbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.CrossRefGoogle Scholar
  8. [8]
    Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys Today 2004, 57, 39–44.CrossRefGoogle Scholar
  9. [9]
    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.CrossRefGoogle Scholar
  10. [10]
    Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.CrossRefGoogle Scholar
  11. [11]
    Carmo, M.; Fritz, D. L.; Merge, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.CrossRefGoogle Scholar
  12. [12]
    Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Jiang, J. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. commun. 2014, 5, 4695.CrossRefGoogle Scholar
  13. [13]
    Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244–260.CrossRefGoogle Scholar
  14. [14]
    Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energ. Combust. 2010, 36, 307–326.CrossRefGoogle Scholar
  15. [15]
    Wu, J.; Xue, Y.; Yan, X.; Yan, W. S.; Chen, Q. M.; Xie, Y. Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 2012, 5, 521–530.CrossRefGoogle Scholar
  16. [16]
    Tueysuez, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47–54.CrossRefGoogle Scholar
  17. [17]
    Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. Chemcatchem 2010, 2, 724–761.CrossRefGoogle Scholar
  18. [18]
    Jiao, F.; Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energ. Environ. Sci. 2010, 3, 1018–1027.CrossRefGoogle Scholar
  19. [19]
    Mills, A. Heterogeneous redox catalysts for oxygen and chlorine evolution. Chem. Soc. Rev. 1989, 18, 285–316.CrossRefGoogle Scholar
  20. [20]
    Yagi, M.; Kaneko, M. Molecular catalysts for water oxidation. Chem. Rev. 2001, 101, 21–35.CrossRefGoogle Scholar
  21. [21]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.CrossRefGoogle Scholar
  22. [22]
    Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 2011, 660, 254–260.CrossRefGoogle Scholar
  23. [23]
    Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.CrossRefGoogle Scholar
  24. [24]
    McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.CrossRefGoogle Scholar
  25. [25]
    Over, H. Surface chemistry of Ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chem. Rev. 2012, 112, 3356–3426.CrossRefGoogle Scholar
  26. [26]
    Foerster, F.; Piguet, A. On the understanding of anodic formation of oxygen. Z. Angew. Phys. Chem. 1904, 10, 714–721.Google Scholar
  27. [27]
    Seiger, H. N.; Shair, R. C. Oxygen evolution from heavily doped nikel oxide electrodes. J. Electrochem. Soc. 1961, 108, C163.CrossRefGoogle Scholar
  28. [28]
    Tichenor, R. L. Nickel oxides relation between electrochemical reactivity and foreign ion content. Ind. Eng. Chem. 1952, 44, 973–977.CrossRefGoogle Scholar
  29. [29]
    Troilius, G.; Alfelt, G. The migration of iron in alkaline nickel-cadmium cells with pocket electrodes. Proceedings of the Fifth International Symposium on Power Sources, Brighton, UK, 1967. pp 337–348.Google Scholar
  30. [30]
    Falk, S. U.; Salkind, A. J. Alkaline storage batteries. Wiley: New York, 1969.Google Scholar
  31. [31]
    Munshi, M. Z. A.; Tseung, A. C. C.; Parker, J. The dissolution of iron from the negative material in pochet plate nickel cadmium batteries. J. Appl. Electrochem. 1985, 15, 711–717.CrossRefGoogle Scholar
  32. [32]
    Hickling, A.; Hill, S. Oxygen overvoltage. 1. The influence of electrode material, current density, and time in aqueous solution. Discuss. Faraday. Soc. 1947, 1, 236–246.CrossRefGoogle Scholar
  33. [33]
    Cordoba, S. I.; Carbonio, R. E.; Teijelo, M. L.; Macagno, V. A. The effect of the preparation method of mixed nickel iron hydroxide electrodes on the oxygen evolution reaction. J. Electrochem. Soc. 1986, 133, C300.Google Scholar
  34. [34]
    Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin-film nickel-oxide electrodes. J. Electrochem. Soc. 1987, 134, 377–384.CrossRefGoogle Scholar
  35. [35]
    Mlynarek, G.; Paszkiewicz, M.; Radniecka, A. The effect of ferric ions on the behavior of a nickelous hydroxide electrode. J. Appl. Electrochem. 1984, 14, 145–149.CrossRefGoogle Scholar
  36. [36]
    Hall, D. E. Electrodes for alkaline water electrolysis. J. Electrochem. Soc. 1981, 128, 740–746.CrossRefGoogle Scholar
  37. [37]
    Bowen, C. T.; Davis, H. J.; Henshaw, B. F.; Lachance, R.; Leroy, R. L.; Renaud, R. Developments in advanced alkaline water electrolysis. Int. J. Hydrogen Energ. 1984, 9, 59–66.CrossRefGoogle Scholar
  38. [38]
    Janjua, M. B. I.; Leroy, R. L. Electrocatalyst performance in industrial water electrolysers. Int. J. Hydrogen Energ. 1985, 10, 11–19.CrossRefGoogle Scholar
  39. [39]
    Birss, V. I.; Damjanovic, A.; Hudson, P. G. Oxygen evolution at platinum electrodes in alkaline solutions. 2. Mechanism of the reaction. J. Electrochem. Soc. 1986, 133, 1621–1625.CrossRefGoogle Scholar
  40. [40]
    Conway, B. E.; Liu, T. C. Characterization of electrocatalysis in the oxygen evolution reaction at platinum by evolution of behavior of surface intermediate states at the oxide film. Langmuir 1990, 6, 268–276.CrossRefGoogle Scholar
  41. [41]
    Corrigan, D. A.; Bendert, R. M. Effect of coprecipitated metal-ions on the electrochemistry of nickel-hydroxide thin-films-cyclic voltammetry in 1M KOH. J. Electrochem. Soc. 1988, 135, C156.Google Scholar
  42. [42]
    Kleinke, M. U.; Knobel, M.; Bonugli, L. O.; Teschke, O. Amorphous alloys as anodic and cathodic materials for alkaline water electrolysis. Int. J. Hydrogen Energ. 1997, 22, 759–762.CrossRefGoogle Scholar
  43. [43]
    Plata-Torres, M.; Torres-Huerta, A. M.; Dominguez-Crespo, M. A.; Arce-Estrada, E. M.; Ramirez-Rodriguez, C. Electrochemical performance of crystalline Ni-Co-Mo-Fe electrodes obtained by mechanical alloying on the oxygen evolution reaction. Int. J. Hydrogen Energ. 2007, 32, 4142–4152.CrossRefGoogle Scholar
  44. [44]
    Potvin, E.; Brossard, L. Electrocatalytic activity of Ni-Fe anodes for alkaline water electrolysis. Mater. Chem. Phys. 1992, 31, 311–318.CrossRefGoogle Scholar
  45. [45]
    Singh, R. N.; Pandey, J. P.; Anitha, K. L. Preparation of electrodeposited thin-films of nickel iron-alloys on mildsteel for alkaline water electrolysis. 1. Studies on oxygen evolutiont. Int. J. Hydrogen Energ. 1993, 18, 467–473.CrossRefGoogle Scholar
  46. [46]
    Grande, W. C.; Talbot, J. B. Electrodeposition of thin-films of nickel-iron.1. Experimental. J. Electrochem. Soc. 1993, 140, 669–674.CrossRefGoogle Scholar
  47. [47]
    Solmaz, R.; Kardas, G. Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochim. Acta 2009, 54, 3726–3734.CrossRefGoogle Scholar
  48. [48]
    Hu, C. C.; Wu, Y. R. Bipolar performance of the electroplated iron-nickel deposits for water electrolysis. Mater. Chem. Phys. 2003, 82, 588–596.CrossRefGoogle Scholar
  49. [49]
    Ullal, Y.; Hegde, A. C. Electrodeposition and electrocatalytic study of nanocrystalline Ni-Fe alloy. Int. J. Hydrogen Energ. 2014, 39, 10485–10492.CrossRefGoogle Scholar
  50. [50]
    Li, X.; Walsh, F. C.; Pletcher, D. Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys. Chem. Chem. Phys. 2011, 13, 1162–1167.CrossRefGoogle Scholar
  51. [51]
    Perez-Alonso, F. J.; Adan, C.; Rojas, S.; Pena, M. A.; Fierro, J. L. G. Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium. Int. J. Hydrogen Energ. 2014, 39, 5204–5212.CrossRefGoogle Scholar
  52. [52]
    Kleiman-Shwarsctein, A.; Hu, Y.-S.; Stucky, G. D.; McFarland, E. W. NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes. Electrochem. Commun. 2009, 11, 1150–1153.CrossRefGoogle Scholar
  53. [53]
    Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.CrossRefGoogle Scholar
  54. [54]
    Merrill, M. D.; Dougherty, R. C. Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 2008, 112, 3655–3666.CrossRefGoogle Scholar
  55. [55]
    Kim, K. H.; Zheng, J. Y.; Shin, W.; Kang, Y. S. Preparation of dendritic NiFe films by electrodeposition for oxygen evolution. RSC Adv. 2012, 2, 4759–4767.CrossRefGoogle Scholar
  56. [56]
    Singh, R. N.; Singh, J. P.; Lal, B.; Thomas, M. J. K.; Bera, S. New NiFe2−xCrxO4 spinel films for O2 evolution in alkaline solutions. Electrochim Acta 2006, 51, 5515–5523.CrossRefGoogle Scholar
  57. [57]
    Anindita, A.; Singh, R. N. Effect of V substitution at B-site on the physicochemical and electrocatalytic properties of spinel-type NiFe2O4 towards O2 evolution in alkaline solutions. Int. J. Hydrogen Energ. 2010, 35, 3243–3248.CrossRefGoogle Scholar
  58. [58]
    Kumar, M.; Awasthi, R.; Sinha, A. S. K.; Singh, R. N. New ternary Fe, Co, and Mo mixed oxide electrocatalysts for oxygen evolution. Int. J. Hydrogen Energ. 2011, 36, 8831–8838.CrossRefGoogle Scholar
  59. [59]
    Chanda, D.; Hnat, J.; Paidar, M.; Bouzek, K. Evolution of physicochemical and electrocatalytic properties of NiCo2O4 (AB(2)O(4)) spinel oxide with the effect of Fe substitution at the A site leading to efficient anodic O2 evolution in an alkaline environment. Int. J. Hydrogen Energ. 2014, 39, 5713–5722.CrossRefGoogle Scholar
  60. [60]
    Cheng, Y.; Liu, C.; Cheng, H.-M.; Jiang, S. P. One-pot synthesis of metal-carbon nanotubes network hybrids as highly efficient catalysts for oxygen evolution reaction of water splitting. ACS Appl. Mater. Inter. 2014, 6, 10089–10098.CrossRefGoogle Scholar
  61. [61]
    Singh, N. K.; Singh, R. N. Electrocatalytic properties of spinel type NixFe3−xO4 synthesized at low temperature for oxygen evolution in KOH solutions. Indian J. Chem. Sect A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem. 1999, 38, 491–495.Google Scholar
  62. [62]
    Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.CrossRefGoogle Scholar
  63. [63]
    Lu, Z. Y.; Wang, H. T.; Kong, D. S.; Yan, K.; Hsu, P. C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat.Commun. 2014, 5, 4345.Google Scholar
  64. [64]
    Miller, E. L.; Rocheleau, R. E. Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electrochem. Soc. 1997, 144, 3072–3077.CrossRefGoogle Scholar
  65. [65]
    Kodama, R. H.; Berkowitz, A. E.; McNiff, E. J.; Foner, S. Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 1996, 77, 394–397.CrossRefGoogle Scholar
  66. [66]
    Kodama, R. H. Magnetic nanoparticles. J. Magn. Magn. Mater. 1999, 200, 359–372.CrossRefGoogle Scholar
  67. [67]
    Smith, R. D. L.; Prevot. M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Sui, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.CrossRefGoogle Scholar
  68. [68]
    Evans, D. G.; Slade, R. C. T. Structural aspects of layered double hydroxides. In Layered Double Hydroxides, Vol. 119. X. Duan & D. G. Evans, eds. Springer: Berlin, Heidelberg, New York, 2006.Google Scholar
  69. [69]
    Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layer double hydroxide (LDH) Nanosheets. Chem. Rev. 2012, 112, 4124–4155.CrossRefGoogle Scholar
  70. [70]
    Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066.CrossRefGoogle Scholar
  71. [71]
    Refait, P.; Abdelmoula, M.; Simon, L.; Genin, J. M. R. Mechanisms of formation and transformation of Ni-Fe layered double hydroxides in SO2− and SO42− containing aqueous solutions. J. Phys. Chem. Solids 2005, 66, 911–917.CrossRefGoogle Scholar
  72. [72]
    Shi, Q. X.; Lu, R. W.; Lu, L. H.; Fu, X. M.; Zhao, D. F. Efficient reduction of nitroarenes over nickel-iron mixed oxide catalyst prepared from a nickel-iron hydrotalcite precursor. Adv. Synth. Catal. 2007, 349, 1877–1881.CrossRefGoogle Scholar
  73. [73]
    Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Rieger, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.CrossRefGoogle Scholar
  74. [74]
    Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2014, 53, 7584–7588.CrossRefGoogle Scholar
  75. [75]
    Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Inter. 2014, 6, 7918–7925.CrossRefGoogle Scholar
  76. [76]
    Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.CrossRefGoogle Scholar
  77. [77]
    Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.CrossRefGoogle Scholar
  78. [78]
    Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. commun. 2014, 5, 4477.Google Scholar
  79. [79]
    Gerken, J. B.; Chen, J. Y. C.; Masse, R. C.; Powell, A. B.; Stahl, S. S. Development of an O2-sensitive fluorescence-quenching assay for the combinatorial discovery of electro-catalysts for water oxidation. Angew. Chem.Inter. Ed. 2012, 51, 6676–6680.CrossRefGoogle Scholar
  80. [80]
    Gerken, J. B.; Shaner, S. E.; Masse, R. C.; Porubsky, N. J.; Stahl, S. S. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni-Fe oxides containing a third metal. Energ. Environ Sci. 2014, 7, 2376–2382.CrossRefGoogle Scholar
  81. [81]
    Haber, J. A.; Xiang, C. C.; Guevarra, D.; Jung, S. H.; Jin, J.; Gregoire, J. M. High-throughput mapping of the electrochemical properties of (Ni-Fe-Co-Ce)Ox oxygen-evolution catalysts. Chemelectrochem 2014, 1, 524–528.CrossRefGoogle Scholar
  82. [82]
    Chen, J. Y. C.; Miller, J. T.; Gerken, J. B.; Stahl, S. S. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: Promotion of activity by a redox-inert metal ion. Energ. Environ. Sci. 2014, 7, 1382–1386.CrossRefGoogle Scholar
  83. [83]
    Bode, H.; Dehmelt, K.; Witte, J. Nickel hydroxide electrodes. 2. oxidation products of nickel(II) hydroxides. Z. Anorg. Allg. Chem 1969, 366, 1.CrossRefGoogle Scholar
  84. [84]
    Barnard, R.; Randell, C. F.; Tye, F. L. Studies concerning charged nickel-hydroxide electrodes. 1. Measurements of reversible potentials. J. Appl. Electrochem. 1980, 10, 109–125.CrossRefGoogle Scholar
  85. [85]
    Lu, P. W. T.; Srinivasan, S. Electrochemical-ellipsometric studies of oxide film for medon nickel during oxygen evolution. J. Electrochem. Soc. 1978, 125, 1416–1422.CrossRefGoogle Scholar
  86. [86]
    Lyons, M. E. G.; Brandon, M. P. The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution. Part 1-Nickel. Inter. J. Electrochem. Sci. 2008, 3, 1386–1424.Google Scholar
  87. [87]
    Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809.CrossRefGoogle Scholar
  88. [88]
    Landon, J.; Demeter, E.; Inoglu, N.; Keturakis, C.; Wachs, I. E.; Vasic, R.; Frenkel, A. I.; Kitchin, J. R. Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2012, 2, 1793–1801.CrossRefGoogle Scholar
  89. [89]
    Li, Y.-F.; Selloni, A. Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal. 2014, 4, 1148–1153.CrossRefGoogle Scholar
  90. [90]
    Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257.CrossRefGoogle Scholar
  91. [91]
    Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.CrossRefGoogle Scholar
  92. [92]
    Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. commun 2013, 4.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations