Nano Research

, Volume 8, Issue 3, pp 1026–1037 | Cite as

Self-organized metal-semiconductor epitaxial graphene layer on off-axis 4H-SiC(0001)

  • Debora Pierucci
  • Haikel Sediri
  • Mahdi Hajlaoui
  • Emilio Velez-Fort
  • Yannick J. Dappe
  • Mathieu G. Silly
  • Rachid Belkhou
  • Abhay Shukla
  • Fausto Sirotti
  • Noelle Gogneau
  • Abdelkarim OuerghiEmail author
Research Article


The remarkable properties of graphene have shown promise for new perspectives in future electronics, notably for nanometer scale devices. Here we grow graphene epitaxially on an off-axis 4H-SiC(0001) substrate and demonstrate the formation of periodic arrangement of monolayer graphene on planar (0001) terraces and Bernal bilayer graphene on \((11\bar 20)\) nanofacets of SiC. We investigate these lateral superlattices using Raman spectroscopy, atomic force microscopy/electrostatic force microscopy (AFM/EFM) and X-ray and angle resolved photoemission spectroscopy (XPS/ARPES). The correlation of EFM and ARPES reveals the appearance of permanent electronic band gaps in AB-stacked bilayer graphene on \((11\bar 20)\) SiC nanofacets of 150 meV. This feature is confirmed by density functional theory (DFT) calculations. The charge transfer between the substrate and graphene bilayer results in an asymmetric charge distribution between the top and the bottom graphene layers opening an energy gap. This surface organization can be thus defined as self-organized metal-semiconductor graphene.


epitaxial graphene layer monolayer bilayer band gap opening Bernal stacking off-axis silicon carbide electronic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Costa Girão, E.; Liang, L. B.; Cruz-Silva, E.; Filho, A. G. S.; Meunier, V. Emergence of a typical properties in assembled graphene nanoribbons. Phys. Rev. Lett. 2011, 107, 135501.CrossRefGoogle Scholar
  2. [2]
    Sprinkle, M.; Ruan, M.; Hu, Y.; Hankinson, J.; Rubio-Roy, M.; Zhang, B.; Wu, X.; Berger, C.; de Heer, W. A. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 2010, 5, 727–731.CrossRefGoogle Scholar
  3. [3]
    Zhou, S. Y.; Gweon, G. H.; Fedorov, A. V.; First, P. N.; de Heer, W. A.; Lee, D. H.; Guinea, F.; Castro Neto, A. H.; Lanzara, A. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007, 6, 770–775.CrossRefGoogle Scholar
  4. [4]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.CrossRefGoogle Scholar
  5. [5]
    Chen, Z. H.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Physica E Lowdimens Syst. Nanostruct. 2007, 40, 228–232.CrossRefGoogle Scholar
  6. [6]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  7. [7]
    Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.CrossRefGoogle Scholar
  8. [8]
    Hass, J.; de Heer, W. A.; Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 2008, 20, 323202.Google Scholar
  9. [9]
    Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B. N.; Naud, C.; Mallet, P.; Veuillen, J. Y.; Berger, C.; Conrad, E. H. et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99, 126805.CrossRefGoogle Scholar
  10. [10]
    Forbeaux, I.; Themlin, J. M.; Debever, J. M. Heteroepitaxial graphite on 6H-SiC (0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 1998, 58, 396–406.CrossRefGoogle Scholar
  11. [11]
    Somani, P. R.; Somani, S. P.; Umeno, M. Planer nanographenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59.CrossRefGoogle Scholar
  12. [12]
    Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.CrossRefGoogle Scholar
  13. [13]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  14. [14]
    Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 2004, 42, 2867–2872.CrossRefGoogle Scholar
  15. [15]
    Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C.; Mammana, V. P. Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 2004, 85, 1265.CrossRefGoogle Scholar
  16. [16]
    Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.CrossRefGoogle Scholar
  17. [17]
    Brey, L.; Fertig, H. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 2006, 73, 235411.CrossRefGoogle Scholar
  18. [18]
    Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 5417954.CrossRefGoogle Scholar
  19. [19]
    Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.CrossRefGoogle Scholar
  20. [20]
    Tapasztó, L.; Dobrik, G.; Lambin, P.; Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by STM lithography. Nat. Nanotechnol. 2008, 3, 397–401.CrossRefGoogle Scholar
  21. [21]
    Han, M. Y.; Brant, J. C.; Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 2010, 104, 056801.CrossRefGoogle Scholar
  22. [22]
    Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.CrossRefGoogle Scholar
  23. [23]
    Hwang, E. H.; Adam, S.; Das Sarma, S. Transport in chemically doped graphene in the presence of adsorbed molecules. Phys. Rev. B 2007, 76, 195421.CrossRefGoogle Scholar
  24. [24]
    Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 2007, 91 163513.CrossRefGoogle Scholar
  25. [25]
    Camara, N.; Rius, G.; Huntzinger, J. R.; Tiberj, A.; Mestres, N.; Godignon, P.; Camassel, J. Selective epitaxial growth of graphene on SiC. Appl. Phys. Lett. 2008, 93, 123503.CrossRefGoogle Scholar
  26. [26]
    Rubio-Roy, M.; Zaman, F.; Hu, Y.; Berger, C.; Moseley, M. W.; Meindl, J. D.; de Heer, W. A. Structured epitaxial graphene growth on SiC by selective graphitization using a patterned AlN cap. Appl. Phys. Lett. 2010, 96, 082112.CrossRefGoogle Scholar
  27. [27]
    Camara, N.; Huntzinger, J. R.; Rius, G.; Tiberj, A.; Mestres, N.; Pérez-Murano, F.; Godignon, P.; Camassel, J. Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6H-SiC. Phys. Rev. B 2009, 80, 125410.CrossRefGoogle Scholar
  28. [28]
    Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Nevius, M. S.; Wang, F.; Shepperd, K.; Palmer, J.; Bertran, F.; Le Fèvre, P.; Kunc, J. et al. A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat. Phys. 2013, 9, 49–54.CrossRefGoogle Scholar
  29. [29]
    Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954.CrossRefGoogle Scholar
  30. [30]
    Ouerghi, A.; Silly, M. G.; Marangolo, M.; Mathieu, C.; Eddrief, M.; Picher, M.; Sirotti, F.; EI Moussaoui, S.; Belkhou, R. Large-area and high-quality epitaxial graphene on off-axis SiC wafers. ACS Nano 2012, 6, 6075–6082.CrossRefGoogle Scholar
  31. [31]
    Nicotra, G.; Ramasse, Q. M.; Deretzis, I.; La Magna, A.; Spinella, C.; Giannazzo, F. Delaminated graphene at silicon carbide facets: Atomic scale imaging and spectroscopy. ACS Nano 2013, 7, 3045–3052.CrossRefGoogle Scholar
  32. [32]
    Tanaka, S.; Morita, K.; Hibino, H. Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces. Phys. Rev. B 2010, 81, 041406.CrossRefGoogle Scholar
  33. [33]
    Vecchio, C.; Sonde, S.; Bongiorno, C.; Rambach, M.; Yakimova, R.; Raineri, V.; Giannazzo, F. Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001). Nanoscale Res. Lett. 2011, 6, 269.CrossRefGoogle Scholar
  34. [34]
    Lalmi, B.; Girard, J. C.; Pallecchi, E.; Silly, M.; David, C.; Latil, S.; Sirotti, F.; Ouerghi, A. Flower-shaped domains and wrinkles in trilayer epitaxial graphene on silicon carbide. Sci. Rep. 2014, 4, 4066.CrossRefGoogle Scholar
  35. [35]
    Pallecchi, E.; Lafont, F.; Cavaliere, V.; Schopfer, F.; Mailly, D.; Poirier, W.; Ouerghi, A. High electron mobility in epitaxial graphene on 4H-SiC(0001) via post-growth annealing under hydrogen. Sci. Rep. 2014, 4, 4558.CrossRefGoogle Scholar
  36. [36]
    Polack, F.; Silly, M.; Chauvet, C.; Lagarde, B.; Bergeard, N.; Izquierdo, M.; Chubar, O.; Krizmancic, D.; Ribbens, M.; Duval, J. P. et al. TEMPO: A new insertion device beamline at SOLEIL for time resolved photoelectron spectroscopy experiments on solids and interfaces. AIP Conf. Proc. 2010, 1234, 185–188.CrossRefGoogle Scholar
  37. [37]
    Bergeard, N.; Silly, M. G.; Krizmancic, D.; Chauvet, C.; Guzzo, M.; Ricaud, J. P.; Izquierdo, M.; Stebel, L.; Pittana, P.; Sergo, R. et al. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure. J. Synchrotron Radiat. 2011, 18, 245–250.CrossRefGoogle Scholar
  38. [38]
    Lewis, J. P.; Glaesemann, K. R.; Voth, G. A.; Fritsch, J.; Demkov, A. A.; Ortega, J.; Sankey, O. F. Further developments in the local-orbital density-functional-theory tight-binding method. Phys. Rev. B 2001, 64, 195103.CrossRefGoogle Scholar
  39. [39]
    Lewis, J. P.; Jelínek, P.; Ortega, J.; Demkov, A. A.; Trabada, D. G.; Haycock, B.; Wang, H.; Adams, G.; Tomfohr, J. K.; Abad, E. et al. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B 2011, 248, 1989–2007.Google Scholar
  40. [40]
    Jelínek, P.; Wang, H.; Lewis, J. P.; Sankey, O. F.; Ortega, J. Multicenter approach to the exchange-correlation interactions in ab initio tight-binding methods. Phys. Rev. B 2005, 71, 235101.CrossRefGoogle Scholar
  41. [41]
    Sankey, O. F.; Niklewski, D. J. Ab initio multicenter tight-binding for molecular-dynamics simulations and other applications in covalent systems. Phys. Rev. B 1989, 40, 3979–3995.CrossRefGoogle Scholar
  42. [42]
    Basanta, M. A.; Dappe, Y. J.; Jelínek, P.; Ortega, J. Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics. Comp. Mater. Sci. 2007, 39, 759–766.CrossRefGoogle Scholar
  43. [43]
    Dappe, Y. J.; Ortega, J.; Flores, F. Intermolecular interaction in density functional theory: Application to carbon nanotubes and fullerenes. Phys. Rev. B 2009, 79, 165409.CrossRefGoogle Scholar
  44. [44]
    Švec, M.; Merino, P.; Dappe, Y. J.; González, C.; Abad, E.; Jelínek, P.; Martin-Gago, J. A. van der Waals interactions mediating the cohesion of fullerenes on graphene. Phys. Rev. B 2012, 86, 121407.CrossRefGoogle Scholar
  45. [45]
    Ouerghi, A.; Balan, A.; Castelli, C.; Picher, M.; Belkhou, R.; Eddrief, M.; Silly, M. G.; Marangolo, M.; Shukla, A.; Sirotti, F. Epitaxial graphene on single domain 3C-SiC (100) thin films grown on off-axis. Appl. Phys. Lett. 2012, 101, 021603.CrossRefGoogle Scholar
  46. [46]
    Michon, A.; Vézian, S.; Ouerghi, A.; Zielinski, M.; Chassagne, T.; Portail, M. Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition. Appl. Phys. Lett. 2010, 97, 171909.CrossRefGoogle Scholar
  47. [47]
    Giannazzo, F.; Deretzis, I.; Nicotra, G.; Fisichella, G.; Spinella, C.; Roccaforte, F.; La Magna, A. Electronic properties of epitaxial graphene residing on SiC facets probed by conductive atomic force microscopy. Appl. Surf. Sci. 2014, 291, 53–57.CrossRefGoogle Scholar
  48. [48]
    Huang, H.; Wong, S. L.; Tin, C. C.; Luo, Z. Q.; Shen, Z. X.; Chen, W.; Wee, A. T. S. Epitaxial growth and characterization of graphene on free-standing polycrystalline 3C-SiC. J. Appl. Phys. 2011, 110, 014308.CrossRefGoogle Scholar
  49. [49]
    Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291.CrossRefGoogle Scholar
  50. [50]
    Burnett, T.; Yakimova, R.; Kazakova, O. Mapping of local electrical properties in epitaxial graphene using electrostatic force microscopy. Nano Lett. 2011, 11, 2324–2328.CrossRefGoogle Scholar
  51. [51]
    Gogneau, N.; Balan, A.; Ridene, M.; Shukla, A.; Ouerghi, A. Control of the degree of surface graphitization on 3C-SiC(100)/Si(100). Surf. Sci. 2012, 606, 217–220.CrossRefGoogle Scholar
  52. [52]
    Filleter, T.; Emtsev, K. V.; Seyller, T.; Bennewitz, R. Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 2008, 93, 133117.CrossRefGoogle Scholar
  53. [53]
    Coletti, C.; Emtsev, K. V.; Zakharov, A. A.; Ouisse, T.; Chaussende, D.; Starke, U. Large area quasi-free standing monolayer graphene on 3C-SiC(111). Appl. Phys. Lett. 2011, 99, 081904.CrossRefGoogle Scholar
  54. [54]
    Emtsev, K. V.; Speck, F.; Seyller, T.; Ley, L.; Riley, J. D. Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 2008, 77, 155303.CrossRefGoogle Scholar
  55. [55]
    Penuelas, J.; Ouerghi, A.; Lucot, D.; David, C.; Gierak, J.; Estrade-Szwarckopf, H.; Andreazza-Vignolle, C. Surface morphology and characterization of thin graphene films on SiC vicinal substrate. Phys. Rev. B 2009, 79, 033408.CrossRefGoogle Scholar
  56. [56]
    Jabakhanji, B.; Michon, A.; Consejo, C.; Desrat, W.; Portail, M.; Tiberj, A.; Paillet, M.; Zahab, A.; Cheynis, F.; Lafont, F. et al. Tuning the transport properties of graphene films grown by CVD on SiC(0001): Effect of in situ hydrogenation and annealing. Phys. Rev. B 2014, 89, 085422.CrossRefGoogle Scholar
  57. [57]
    Ostler, M.; Deretzis, I.; Mammadov, S.; Giannazzo, F.; Nicotra, G.; Spinella, C.; Seyller, T.; La Magna, A. Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. Phys. Rev. B 2013, 88, 085408.CrossRefGoogle Scholar
  58. [58]
    Jayasekera, T.; Xu, S.; Kim, K. W.; Nardelli, M. B. Electronic properties of the graphene/6H-SiC(000-1) interface: A first-principles study. Phys. Rev. B 2011, 84, 035442.CrossRefGoogle Scholar
  59. [59]
    Ohta, T.; Bostwick, A.; Mcchesney, J. L.; Seyller, T.; Horn, K.; Rotenberg, E. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2007, 98, 206802.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Debora Pierucci
    • 1
  • Haikel Sediri
    • 1
  • Mahdi Hajlaoui
    • 1
    • 2
  • Emilio Velez-Fort
    • 1
    • 3
  • Yannick J. Dappe
    • 4
  • Mathieu G. Silly
    • 2
  • Rachid Belkhou
    • 2
  • Abhay Shukla
    • 3
  • Fausto Sirotti
    • 2
  • Noelle Gogneau
    • 1
  • Abdelkarim Ouerghi
    • 1
    Email author
  1. 1.CNRS-Laboratoire de Photonique et de NanostructuresMarcoussisFrance
  2. 2.Synchrotron-SOLEIL, Saint-AubinGif sur Yvette CedexFrance
  3. 3.Université Pierre et Marie Curie (CNRS - IMPMC)ParisFrance
  4. 4.Service de Physique de l’Etat Condensé (CNRS URA2464), IRAMISCEA SaclayGif-Sur-YvetteFrance

Personalised recommendations