Nano Research

, Volume 8, Issue 3, pp 860–869 | Cite as

Sweet plasmonics: Sucrose macrocrystals of metal nanoparticles

  • Talha Erdem
  • Zeliha Soran-Erdem
  • Pedro Ludwig Hernandez-Martinez
  • Vijay Kumar Sharma
  • Halil Akcali
  • Ibrahim Akcali
  • Nikolai Gaponik
  • Alexander Eychmüller
  • Hilmi Volkan Demir
Research Article

Abstract

The realization of plasmonic structures generally necessitates expensive fabrication techniques, such as electron beam and focused ion beam lithography, allowing for the top-down fabrication of low-dimensional structures. Another approach to make plasmonic structures in a bottom-up fashion is colloidal synthesis, which is convenient for liquid-state applications or very thin solid films where aggregation problems are an important challenge. The architectures prepared using these methods are typically not robust enough for easy handling and convenient integration. Therefore, developing a new plasmonic robust platform having large-scale dimensions without adversely affecting the plasmonic features is in high demand. As a solution, here we present a new plasmonic composite structure consisting of gold nanoparticles (Au NPs) incorporated into sucrose macrocrystals on a large scale, while preserving the plasmonic nature of the Au NPs and providing robustness in handling at the same time. As a proof of concept demonstration, we present the fluorescence enhancement of green CdTe quantum dots (QDs) via plasmonic coupling with these Au NPs in the sucrose crystals. The obtained composite material exhibits centimeter scale dimensions and the resulting quantum efficiency (QE) is enhanced via the interplay between the Au NPs and CdTe QDs by 58% (from 24% to 38%). Moreover, a shortening in the photoluminescence lifetime from 11.0 to 7.40 ns, which corresponds to a field enhancement factor of 2.4, is observed upon the introduction of Au NPs into the QD incorporated macrocrystals. These results suggest that such “sweet” plasmonic crystals are promising for large-scale robust platforms to embed plasmonic nanoparticles.

Keywords

plasmonics macrocrystals metal nanoparticles metal enhanced fluorescence colloidal quantum dots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_568_MOESM1_ESM.pdf (1.4 mb)
Supplementary material, approximately 1.36 MB.

References

  1. [1]
    Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.CrossRefGoogle Scholar
  2. [2]
    Brolo, A. G. Plasmonics for future biosensors. Nat. Photon. 2012, 6, 709–713.CrossRefGoogle Scholar
  3. [3]
    Pelton, M.; Aizpurua, J.; Bryant, G. Metal-nanoparticle plasmonics. Laser Photon. Rev. 2008, 2, 136–159.CrossRefGoogle Scholar
  4. [4]
    Temnov, V. V. Ultrafast acousto-magneto-plasmonics. Nat. Photon. 2012, 6, 728–736.CrossRefGoogle Scholar
  5. [5]
    Ozel, T.; Hernandez Martinez, P. L.; Mutlugun, E.; Akin, O.; Nizamoglu, S.; Ozel, I. O.; Zhang, Q.; Xiong, Q. H.; Demir, H. V. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versusacceptor- selective plexcitons. Nano Lett. 2013, 13, 3065–3072.CrossRefGoogle Scholar
  6. [6]
    Xiao, M. D.; Jiang, R. B.; Wang, F.; Fang, C. H.; Wang, J. F.; Yu, J. C. Plasmon-enhanced chemical reactions. J. Mater. Chem. A 2013, 1, 5790–5805.CrossRefGoogle Scholar
  7. [7]
    Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 2012, 6, 737–748.CrossRefGoogle Scholar
  8. [8]
    Durach, M.; Rusina, A.; Stockman, M. I.; Nelson, K. Toward full spatiotemporal control on the nanoscale. Nano Lett. 2007, 7, 3145–3149.CrossRefGoogle Scholar
  9. [9]
    Israelowitz, M.; Amey, J.; Cong, T.; Sureshkumar, R. Spin coated plasmonic nanoparticle interfaces for photocurrent enhancement in thin film Si solar cells. J. Nanomater. 2014, 2014, 639458.CrossRefGoogle Scholar
  10. [10]
    Otto, T.; Müller, M.; Mundra, P.; Lesnyak, V.; Demir, H. V.; Gaponik, N.; Eychmuller, A. Colloidal nanocrystals embedded in macrocrystals: Robustness, photostability, and color purity. Nano Lett. 2012, 12, 5348–5354.CrossRefGoogle Scholar
  11. [11]
    Kalytchuk, S.; Zhovtiuk, O.; Rogach, A. L. Sodium chloride protected CdTe quantum dot based solid-state luminophores with high color quality and fluorescence efficiency. Appl. Phys. Lett. 2013, 103, 103105.CrossRefGoogle Scholar
  12. [12]
    Kim, Y.; Johnson, R. C.; Hupp, J. T. Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett. 2001, 1, 165–167.CrossRefGoogle Scholar
  13. [13]
    Teng, Y.; Ueno, K.; Shi, X.; Aoyo, D.; Qiu, J.; Misawa, H. Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures. Ann. Phys. 2012, 524, 733–740.CrossRefGoogle Scholar
  14. [14]
    Albon, N.; Dunning, W. The observation of growth steps on sucrose crystals. ActaCryst. 1959, 12, 219–221.Google Scholar
  15. [15]
    Govorov, A. O.; Bryant, G. W.; Zhang, W.; Skeini, T.; Lee, J.; Kotov, N. A.; Slocik, J. M.; Naik, R. R. Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Lett. 2006, 6, 984–994.CrossRefGoogle Scholar
  16. [16]
    Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel, A.; Eychmüller, A.; Rakovich, Y. P.; Donegan, J. F. Aqueous synthesis of thiol-capped CdTenanocrystals: State-of-the-art. J. Phys. Chem. C 2007, 111, 14628–14637.CrossRefGoogle Scholar
  17. [17]
    Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdSnanocrystals. Chem. Mater. 2003, 15, 2854–2860.CrossRefGoogle Scholar
  18. [18]
    Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241, 20–22.Google Scholar
  19. [19]
    Haiss, W.; Thanh, N. T.; Aveyard, J.; Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal. Chem. 2007, 79, 4215–4221.CrossRefGoogle Scholar
  20. [20]
    Glauert, A. Epoxy resins: An update on their selection and use. Microsc. Anal. 1991, 15–20.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Talha Erdem
    • 1
  • Zeliha Soran-Erdem
    • 1
  • Pedro Ludwig Hernandez-Martinez
    • 1
    • 2
  • Vijay Kumar Sharma
    • 1
  • Halil Akcali
    • 1
  • Ibrahim Akcali
    • 1
  • Nikolai Gaponik
    • 3
  • Alexander Eychmüller
    • 3
  • Hilmi Volkan Demir
    • 1
    • 2
  1. 1.Departments of Electrical and Electronics Engineering, Physics, UNAM-National Nanotechnology Research Center, and Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
  2. 2.School of Electrical and Electronic Engineering and School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  3. 3.Physical ChemistryTU DresdenDresdenGermany

Personalised recommendations