Nano Research

, Volume 7, Issue 12, pp 1769–1776 | Cite as

III–V semiconductor nanocrystal formation in silicon nanowires via liquid-phase epitaxy

  • Slawomir Prucnal
  • Markus Glaser
  • Alois Lugstein
  • Emmerich Bertagnolli
  • Michael Stöger-Pollach
  • Shengqiang Zhou
  • Manfred Helm
  • Denis Reichel
  • Lars Rebohle
  • Marcin Turek
  • Jerzy Zuk
  • Wolfgang Skorupa
Research Article

Abstract

Direct integration of high-mobility III–V compound semiconductors with existing Si-based complementary metal-oxide-semiconductor (CMOS) processing platforms presents the main challenge to increasing the CMOS performance and the scaling trend. Silicon hetero-nanowires with integrated III–V segments are one of the most promising candidates for advanced nano-optoelectronics, as first demonstrated using molecular beam epitaxy techniques. Here we demonstrate a novel route for InAs/Si hybrid nanowire fabrication via millisecond range liquid-phase epitaxy regrowth using sequential ion beam implantation and flash-lamp annealing. We show that such highly mismatched systems can be monolithically integrated within a single nanowire. Optical and microstructural investigations confirm the high quality hetero-nanowire fabrication coupled with the formation of atomically sharp interfaces between Si and InAs segments. Such hybrid systems open new routes for future high-speed and multifunctional nanoelectronic devices on a single chip.

Keywords

liquid phase epitaxy InAs hetero-nanowires silicon ion implantation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hocevar, M.; Immink, G.; Verheijen, M.; Akopian, N.; Zwiller, V.; Kouwenhoven, L.; Bakkers, E. Growth and optical properties of axial hybrid III–V/silicon nanowires. Nat. Commun. 2012, 3, 1266.CrossRefGoogle Scholar
  2. [2]
    Tomioka, K.; Yoshimura, M.; Fukui, T. A III–V nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189–192.CrossRefGoogle Scholar
  3. [3]
    Justice, J.; Bower, Ch.; Meitl, M.; Mooney, M. B.; Gubbins, M. A.; Corbett, B. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photon. 2012, 6, 610–614.CrossRefGoogle Scholar
  4. [4]
    Bessire, C. D.; Björk, M. T.; Schmid, H.; Schenk, A.; Reuter, K. B.; Riel, H.; Trap-assisted tunneling in Si-InAs nanowire heterojunction tunnel diodes. Nano Lett. 2011, 11, 4195–4199.CrossRefGoogle Scholar
  5. [5]
    Ng, K. W.; Ko, W. S.; Tran, T. T.; Chen, R.; Nazarenko, M. V.; Lu, F.; Dubrovskii, V. G.; Kamp, M.; Forchel, A.; Chang-Hasnain, C. J. Unconventional growth mechanism for monolithic integration of III–V on silicon. ACS Nano 2013, 7, 100–107.CrossRefGoogle Scholar
  6. [6]
    del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 2011, 479, 317–323.CrossRefGoogle Scholar
  7. [7]
    Lubyshev, D.; Fastenau, J. M.; Liu, W. K. Integration of III–V and Si CMOS devices by molecular beam epitaxy. ECS Transactions 2009, 19, 295–308.CrossRefGoogle Scholar
  8. [8]
    Colinge, J.-P.; Lee, Ch.-W.; Afzalian, A.; Akhavan, N. D.; Yan, R.; Ferain, I.; Razavi, P.; O’Neill, B.; Blake, A.; White, M. et al. Nanowire transistors without junctions. Nat. Nanotechnol. 2010, 5, 225–229.CrossRefGoogle Scholar
  9. [9]
    Razavi, P.; Fagas, G. Electrical performance of III–V gate-all-around nanowire transistors. Appl. Phys. Lett. 2013, 103, 063506.CrossRefGoogle Scholar
  10. [10]
    Colli, A.; Fasoli, A.; Ronning, C.; Pisana, S.; Piscanec, S.; Ferrari, A. C. Ion beam doping of silicon nanowires. Nano Lett. 2008, 8, 2188–2193.CrossRefGoogle Scholar
  11. [11]
    Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.CrossRefGoogle Scholar
  12. [12]
    Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high performance field-effect transistors. Nature 2006, 441, 489–493.CrossRefGoogle Scholar
  13. [13]
    Lu, W.; Xie, P.; Lieber, C. M. Nanowire transistor performance limits and applications. IEEE Trans. Electron Dev. 2008, 55, 2859–2876.CrossRefGoogle Scholar
  14. [14]
    Fan, P. Y.; Chettiar, U. K.; Cao, L. Y.; Afshinmanesh, F.; Engheta, N.; Brongersma. M. L. An invisible metal-semiconductor photodetector. Nat. Photon. 2012, 6, 380–385.CrossRefGoogle Scholar
  15. [15]
    Limbach, F.; Hauswald, C.; Lähnemann, J.; Wölz, M.; Brandt, O.; Trampert, A.; Hanke, M.; Jahn, U.; Calarco, R.; Geelhaar L. et al. Current path in light emitting diodes based on nanowire ensembles. Nanotechnology 2012, 23, 465301.CrossRefGoogle Scholar
  16. [16]
    Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.CrossRefGoogle Scholar
  17. [17]
    Dick, K. A.; Kodambaka, S.; Reuter, M. C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L. R.; Ross, F. M. The morphology of axial and branched nanowire heterostructures. Nano Lett. 2007, 7, 1817–1822.CrossRefGoogle Scholar
  18. [18]
    Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57–61.CrossRefGoogle Scholar
  19. [19]
    Prucnal, S.; Facsko, S.; Baumgart, C.; Schmidt, H.; Liedke, M. O.; Rebohle, L.; Shalimov, A.; Reuther, H.; Kanjilal, A.; Mücklich, A. et al. n-InAs nanopyramids fully integrated into silicon. Nano Lett. 2011, 11, 2814–2818.CrossRefGoogle Scholar
  20. [20]
    Prucnal, S.; Zhou, S. Q.; Ou, X.; Reuther, H.; Liedke, M. O.; Mücklich, A.; Helm, M.; Zuk, J.; Turek, M.; Pyszniak K. et al. InP nanocrystals on silicon for optoelectronic applications. Nanotechnology 2012, 23, 485204.CrossRefGoogle Scholar
  21. [21]
    Prucnal, S.; Zhou, S. Q.; Ou, X.; Facsko, S. Liedke, M. O.; Bregolin, F.; Liedke, B.; Grebing, J.; Fritzsche, M.; Hübner, R. et al. III–V/Si on silicon-on-insulator platform for hybrid nanoelectronics. J. Appl. Phys. 2014, 115, 074306.CrossRefGoogle Scholar
  22. [22]
    Lugstein, A.; Steinmair, M.; Hyun, Y. J.; Hauer, G.; Pongratz, P.; Bertagnolli, E. Pressure-induced orientation control of the growth of epitaxial silicon nanowires. Nano Lett. 2008, 8, 2310–2314.CrossRefGoogle Scholar
  23. [23]
    Skorupa, W.; Gebel, T.; Yankov, R. A.; Paul, S.; Lerch, W.; Downey, D. F.; Arevalo, E. A. J. Advanced thermal processing of ultrashallow implanted junctions using flash lamp annealing. J. Electrochem. Soc. 2005, 152, G436–G440.CrossRefGoogle Scholar
  24. [24]
    Thompson, M. O.; Galvin, G. J.; Mayer, J. W.; Peercy, P. S.; Poate, J. M.; Jacobson, D. C.; Cullis, A. G.; Chew, N. G. Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation. Phys. Rev. Lett. 1984, 52, 2360.CrossRefGoogle Scholar
  25. [25]
    Garandet, J. P. New Determinations of diffusion coefficients for various dopants in liquid silicon. Int. J. Thermophys. 2007, 28, 1285–1303.CrossRefGoogle Scholar
  26. [26]
    Geiler, H.-D.; Glaser, E.; Götz, G.; Wagner, M. J. Explosive crystallization in silicon. J. Appl. Phys. 1986, 59, 3091.CrossRefGoogle Scholar
  27. [27]
    Ohdaira, K.; Fujiwara, T.; Endo, Y.; Nishizaki, S.; Matsumura, H. Explosive crystallization of amorphous silicon films by flash lamp annealing. J. Appl. Phys. 2009, 106, 044907.CrossRefGoogle Scholar
  28. [28]
    Smith, M.; McMahon, R. A.; Voelskow, M.; Skorupa, W. Modeling and regrowth mechanisms of flash lamp processing of SiC-on-silicon heterostructures. J. Appl. Phys. 2004, 96, 4843.CrossRefGoogle Scholar
  29. [29]
    Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data; Springer: Berlin, 2005.CrossRefGoogle Scholar
  30. [30]
    Prucnal, S.; Turek, M.; Drozdziel, A.; Pyszniak, K.; Zhou, S. Q.; Kanjilal, A.; Skorupa, W.; Zuk, J. Formation of InAs quantum dots in silicon by sequential ion implantation and flash lamp annealing. Appl. Phys. B 2010, 101, 315–319.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Slawomir Prucnal
    • 1
  • Markus Glaser
    • 2
  • Alois Lugstein
    • 2
  • Emmerich Bertagnolli
    • 2
  • Michael Stöger-Pollach
    • 3
  • Shengqiang Zhou
    • 1
  • Manfred Helm
    • 1
    • 4
  • Denis Reichel
    • 1
  • Lars Rebohle
    • 1
  • Marcin Turek
    • 5
  • Jerzy Zuk
    • 5
  • Wolfgang Skorupa
    • 1
  1. 1.Institute of Ion Beam Physics and Materials ResearchHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  2. 2.Institute of Solid State ElectronicsVienna University of TechnologyViennaAustria
  3. 3.USTEM, Vienna University of TechnologyViennaAustria
  4. 4.Center for Advancing Electronics DresdenTechnische Universität DresdenDresdenGermany
  5. 5.Maria Curie-Sklodowska UniversityLublinPoland

Personalised recommendations