Nano Research

, Volume 7, Issue 10, pp 1477–1487 | Cite as

Three-dimensional porous graphene sponges assembled with the combination of surfactant and freeze-drying

  • Rujing Zhang
  • Yachang Cao
  • Peixu Li
  • Xiaobei Zang
  • Pengzhan Sun
  • Kunlin Wang
  • Minlin Zhong
  • Jinquan Wei
  • Dehai Wu
  • Feiyu Kang
  • Hongwei ZhuEmail author
Research Article


With the combination of surfactant and freeze-drying, we have developed two kinds of graphene spongy structures. On the one hand, using foams of soap bubbles as templates, three-dimensional porous graphene sponges with rich hierarchical pores have been synthesized. Pores of the material contain three levels of length scales, including millimeter, micrometer and nanometer. The structure can be tuned by changing the freezing media, adjusting the stirring rate or adding functional additives. On the other hand, by direct freeze-drying of a graphene oxide/surfactant suspension, a porous framework with directionally aligned pores is prepared. The surfactant gives a better dispersion of graphene oxide sheets, resulting in a high specific surface area. Both of the obtained materials exhibit excellent absorption capacity and good compression performance, providing a broad range of possible applications, such as absorbents, storage media, and carriers.


graphene sponge hierarchical freezing media porous foams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary material, approximately 1.08 MB.

Supplementary material, approximately 1.17 MB.

Supplementary material, approximately 1.29 MB.

12274_2014_508_MOESM4_ESM.pdf (2.3 mb)
Supplementary material, approximately 2.31 MB.


  1. [1]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  2. [2]
    Li, X. M.; Zhao, T. S.; Wang, K. L.; Yang, Y.; Wei, J. Q.; Kang, F. Y.; Wu, D. H.; Zhu, H. W. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 2011, 27, 12164–12171.CrossRefGoogle Scholar
  3. [3]
    Dong, Z. L.; Jiang, C. C.; Cheng, H. H.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 2012, 24, 1856–1861.CrossRefGoogle Scholar
  4. [4]
    Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.CrossRefGoogle Scholar
  5. [5]
    Hu, C. G.; Zhao, Y.; Cheng, H. H.; Wang, Y. H.; Dong, Z. L.; Jiang, C. C.; Zhai, X. Q.; Jiang, L.; Qu, L. T. Graphene microtubings: Controlled fabrication and site-specific functionalization. Nano Lett. 2012, 12, 5879–5884.CrossRefGoogle Scholar
  6. [6]
    Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.CrossRefGoogle Scholar
  7. [7]
    Li, X.; Zhang, R. J.; Yu, W. J.; Wang, K. L.; Wei, J. Q.; Wu, D. H.; Cao, A. Y.; Li, Z. H.; Cheng, Y.; Zheng, Q. S. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870.Google Scholar
  8. [8]
    Hu, H.; Zhao, Z. B.; Zhang, R.; Bin, Y. Z.; Qiu, J. S. Polymer casting of ultralight graphene aerogels for the production of conductive nanocomposites with low filling content. J. Mater. Chem. A 2014, 2, 3756–3760.CrossRefGoogle Scholar
  9. [9]
    Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.CrossRefGoogle Scholar
  10. [10]
    Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. 2012, 51, 11371–11375.CrossRefGoogle Scholar
  11. [11]
    Zhang, J.; Zhao, F.; Zhang, Z. P.; Chen, N.; Qu, L. T. Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale 2013, 5, 3112–3126.CrossRefGoogle Scholar
  12. [12]
    Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 2012, 51, 5101–5105.CrossRefGoogle Scholar
  13. [13]
    Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. Int. Ed. 2013, 52, 2925–2929.CrossRefGoogle Scholar
  14. [14]
    Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.CrossRefGoogle Scholar
  15. [15]
    Ariga, K.; Vinu, A.; Yamauchi, Y.; Ji, Q. M.; Hill, J. P. Nanoarchitectonics for mesoporous materials. Bull. Chem. Soc. Jpn. 2012, 85, 1–32.CrossRefGoogle Scholar
  16. [16]
    Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.CrossRefGoogle Scholar
  17. [17]
    Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 2009, 21, 2180–2184.CrossRefGoogle Scholar
  18. [18]
    Estevez, L.; Kelarakis, A.; Gong, Q. M.; Da’as, E. H.; Giannelis, E. P. Multifunctional graphene/platinum/nafion hybrids via ice templating. J. Am. Chem. Soc. 2011, 133, 6122–6125.CrossRefGoogle Scholar
  19. [19]
    Xiao, X. Y.; Beechem, T. E.; Brumbach, M. T.; Lambert, T. N.; Davis, D. J.; Michael, J. R.; Washburn, C. M.; Wang, J.; Brozik, S. M.; Wheeler, D. R. et al. Lithographically defined three-dimensional graphene structures. ACS Nano 2012, 6, 3573–3579.CrossRefGoogle Scholar
  20. [20]
    Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.CrossRefGoogle Scholar
  21. [21]
    Jiang, X.; Ma, Y. W.; Li, J. J.; Fan, Q. L.; Huang, W. Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage. J. Phys. Chem. C 2010, 114, 22462–22465.CrossRefGoogle Scholar
  22. [22]
    Chen, W. F.; Yan, L. F. In situ self-assembly of mild chemical reduction graphene for three-dimensional architecttures. Nanoscale 2011, 3, 3132–3137.CrossRefGoogle Scholar
  23. [23]
    Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 2012, 6, 2693–2703.CrossRefGoogle Scholar
  24. [24]
    Liu, F.; Seo, T. S. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv. Funct. Mater. 2010, 20, 1930–1936.CrossRefGoogle Scholar
  25. [25]
    Niu, Z. Q.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. D. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144–4150.CrossRefGoogle Scholar
  26. [26]
    Chen, Y. Q.; Chen, K. W.; Bai, H.; Li, L. Electrochemically reduced graphene porous material as light absorber for light-driven thermoelectric generator. J. Mater. Chem. 2012, 22, 17800–17804.CrossRefGoogle Scholar
  27. [27]
    Chen, K. W.; Chen, L. B.; Chen, Y. Q.; Bai, H.; Li, L. Three-dimensional porous graphene-based composite materials: Electrochemical synthesis and application. J. Mater. Chem. 2012, 22, 20968–20976.CrossRefGoogle Scholar
  28. [28]
    Sheng, K. X.; Sun, Y. S.; Li, C.; Yuan, W. J.; Shi, G. Q. Ultrahigh-rate supercapacitors based on electrochemically reduced graphene oxide for ac line-filtering. Sci. Rep. 2012, 2, 247.CrossRefGoogle Scholar
  29. [29]
    Xie, X.; Zhou, Y. L.; Bi, H. C.; Yin, K. B.; Wan, S.; Sun, L. T. Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci. Rep. 2013, 3, 2117.Google Scholar
  30. [30]
    Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560.CrossRefGoogle Scholar
  31. [31]
    Parlett, C. M. A.; Wilson, K.; Lee, A. F. Hierarchical porous materials: Catalytic applications. Chem. Soc. Rev. 2013, 42, 3876–3893.CrossRefGoogle Scholar
  32. [32]
    Taguchi, A.; Smatt, J. H.; Lindén, M. Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv. Mater. 2003, 15, 1209–1211.CrossRefGoogle Scholar
  33. [33]
    Piat, R.; Schnack, E. Hierarchical material modeling of carbon/carbon composites. Carbon 2003, 41, 2121–2129.CrossRefGoogle Scholar
  34. [34]
    Yin, S. Y.; Zhang, Y. Y.; Kong, J. H.; Zou, C. J.; Li, C. M.; Lu, X. H.; Ma, J.; Boey, F. Y. C.; Chen, X. D. Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 2011, 5, 3831–3838.CrossRefGoogle Scholar
  35. [35]
    Yang, S. Y.; Chang, K. H.; Tien, H. W.; Lee, Y. F.; Li, S. M.; Wang, Y. S.; Wang, J. Y.; Ma, C. C. M.; Hu, C. C. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J. Mater. Chem. 2011, 21, 2374–2380.CrossRefGoogle Scholar
  36. [36]
    Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A. et al. Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett. 2011, 11, 5071–5078.CrossRefGoogle Scholar
  37. [37]
    Li, X. Y.; Huang, X. L.; Liu, D. P.; Wang, X.; Song, S. Y.; Zhou, L.; Zhang, H. J. Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 2011, 115, 21567–21573.CrossRefGoogle Scholar
  38. [38]
    Wu, C.; Huang, X. Y.; Wu, X. F.; Qian, R.; Jiang, P. K. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv. Mater. 2013, 25, 5658–5662.CrossRefGoogle Scholar
  39. [39]
    Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; He, L. B.; Xu, F.; Banhart, F.; Sun, L. T.; Ruoff, R. S. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 2012, 22, 4421–4425.CrossRefGoogle Scholar
  40. [40]
    Yao, X.; Yao, H. W.; Li, Y. T. Hierarchically aligned porous scaffold by ice-segregation-induced self-assembly and thermally triggered electrostatic self-assembly of oppositely charged thermosensitive microgels. J. Mater. Chem. 2009, 19, 6516–6520.CrossRefGoogle Scholar
  41. [41]
    Saye, R. I.; Sethian, J. A. Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams. Science 2013, 340, 720–724.CrossRefGoogle Scholar
  42. [42]
    Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; Ruoff, R. S.; Sun, L. T. Highly enhanced performance of spongy graphene as an oil sorbent. J. Mater. Chem. A 2014, 2, 1652–1656.CrossRefGoogle Scholar
  43. [43]
    Zhao, J. P.; Ren, W. C.; Cheng, H. M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J. Mater. Chem. 2012, 22, 20197–20202.CrossRefGoogle Scholar
  44. [44]
    Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rujing Zhang
    • 1
  • Yachang Cao
    • 1
  • Peixu Li
    • 2
  • Xiaobei Zang
    • 1
  • Pengzhan Sun
    • 1
  • Kunlin Wang
    • 1
  • Minlin Zhong
    • 1
  • Jinquan Wei
    • 1
  • Dehai Wu
    • 2
  • Feiyu Kang
    • 1
    • 3
  • Hongwei Zhu
    • 1
    • 3
    • 4
    Email author
  1. 1.School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOETsinghua UniversityBeijingChina
  2. 2.Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  3. 3.Advanced Materials Institute, Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  4. 4.Center for Nano and Micro MechanicsTsinghua UniversityBeijingChina

Personalised recommendations