Nano Research

, Volume 7, Issue 9, pp 1319–1326 | Cite as

SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability

  • Lei Li
  • Anton Kovalchuk
  • James M. Tour
Research Article


A nanocomposite material of SnO2-reduced graphene oxide nanoribbons has been developed. In this composite, the reduced graphene oxide nanoribbons are uniformly coated by nanosized SnO2 that formed a thin layer of SnO2 on the surface. When used as anodes in lithium ion batteries, the composite shows outstanding electrochemical performance with the high reversible discharge capacity of 1,027 mAh/g at 0.1 A/g after 165 cycles and 640 mAh/g at 3.0 A/g after 160 cycles with current rates varying from 0.1 to 3.0 A/g and no capacity decay after 600 cycles compared to the second cycle at a current density of 1.0 A/g. The high reversible capacity, good rate performance and excellent cycling stability of the composite are due to the synergistic combination of electrically conductive reduced graphene oxide nanoribbons and SnO2. The method developed here is practical for the large-scale development of anode materials for lithium ion batteries.


lithium ion battery tin oxide graphene oxide nanoribbons energy storage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_496_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 1.64 MB.


  1. [1]
    Su, Y. Z.; Li, S.; Wu, D. Q.; Zhang, F.; Liang, H. W.; Gao, P. F.; Cheng, C.; Feng, X. L. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 2012, 6, 8349–8356.CrossRefGoogle Scholar
  2. [2]
    Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.CrossRefGoogle Scholar
  3. [3]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  4. [4]
    Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Jin, M. H.; Liang, M. H.; Dayeh, S. A.; Picraux, S. T.; Zhi, L. J. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets aslithium ion battery anodes. ACS Nano 2013, 7, 1437–1445.CrossRefGoogle Scholar
  5. [5]
    Aricò, A. S.; Bruce, P.; Scosati, B.; Tarascon, J. M. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  6. [6]
    Chen, J. S.; Lou, X. W. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 2013, 9, 1877–1893.CrossRefGoogle Scholar
  7. [7]
    Haag, J. M.; Pattanaik, G.; Durstock, M. F. Nanostructured 3D electrode architectures for high-rate Li-ionbatteries. Adv. Mater. 2013, 25, 3238–3243.CrossRefGoogle Scholar
  8. [8]
    Zhang, L.; Zhang, G. Q.; Wu, H. B.; Yu, L.; Lou, X. W. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv. Mater. 2013, 25, 2589–2593.CrossRefGoogle Scholar
  9. [9]
    Lou, X. W.; Li, C. M.; Archer, L. A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 2009, 21, 2536–2539.CrossRefGoogle Scholar
  10. [10]
    Li, Y.; Zhu, S. M.; Liu, Q. L.; Gu, J. J.; Guo, Z. P.; Chen, Z. X.; Feng, C. L.; Zhang, D.; Moon, W. J. Carbon-coated SnO2@C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery. J. Mater. Chem. 2012, 22, 2766–2773.CrossRefGoogle Scholar
  11. [11]
    He, M.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Shu, J.; Huang, Y. H. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. Nanoscale 2013, 5, 3298–3305.CrossRefGoogle Scholar
  12. [12]
    Wang, X.; Cao, X. Q.; Bourgeois, L.; Guan, H.; Chen, S.; Zhong, Y.; Tang, D. M.; Li, H. Q.; Zhai, T. Y.; Li, L. et al. N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv. Funct. Mater. 2012, 22, 2682–2690.CrossRefGoogle Scholar
  13. [13]
    Yang, S.; Yue, W. B.; Zhu, J.; Ren, Y.; Yang, X. J. Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 3570–3576.CrossRefGoogle Scholar
  14. [14]
    Zhou, X. S.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 17456–17459.CrossRefGoogle Scholar
  15. [15]
    Ji, G.; Ding, B.; Sha, Z.; Wu, J. S.; Ma, Y.; Lee, J. Y. Conformal graphene encapsulation of tin oxide nanoparticle aggregates for improved performance in reversible Li+ storage. Nanoscale 2013, 5, 5965–5972.CrossRefGoogle Scholar
  16. [16]
    Wang, L.; Wang, D.; Dong, Z. H.; Zhang, F. X.; Jin, J. Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery. Nano Lett. 2013, 13, 1711–1716.Google Scholar
  17. [17]
    Wen, Z.; Wang, Q.; Zhang, Q.; Li, J. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 2007, 17, 2772–2778.CrossRefGoogle Scholar
  18. [18]
    Ding, S. J.; Chen, J. S.; Lou, X. W. One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties. Adv. Funct. Mater. 2011, 21, 4120–4125.CrossRefGoogle Scholar
  19. [19]
    Hu, R. Z.; Sun, W.; Liu, H.; Zeng, M. Q.; Zhu, M. The fast filling of nano-SnO2 in CNTs by vacuum absorption: A new approach to realize cyclic durable anodes for lithium ion batteries. Nanoscale 2013, 5, 11971–11979.CrossRefGoogle Scholar
  20. [20]
    Lin, J.; Peng, Z. W.; Xiang, C. S.; Ruan, G. D.; Yan, Z.; Natelson, D.; Tour, J. M. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 2013, 7, 6001–6006.CrossRefGoogle Scholar
  21. [21]
    Ye, J. F.; Zhang, H. J.; Yang, R.; Li, X. G.; Qi, L. M. Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 2010, 6, 296–306.CrossRefGoogle Scholar
  22. [22]
    Wang, Y.; Lee, J. Y.; Zeng, H. C. Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 2005, 17, 3899–3903.CrossRefGoogle Scholar
  23. [23]
    Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Edit. 2007, 119, 764–767.CrossRefGoogle Scholar
  24. [24]
    Wang, C.; Zhou, Y.; Ge, M. Y.; Xu, X. B.; Zhang, Z. L.; Jiang, J. Z. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 2010, 132, 46–47.CrossRefGoogle Scholar
  25. [25]
    Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  26. [26]
    Deng, J. W.; Yan, C. L.; Yang, L. C.; Baunack, S.; Oswald, S.; Wendrock, H.; Mei, Y. F.; Schmidt, O. G. Sandwich-stacked SnO2/Cu hybrid nanosheets as multichannel anodes for lithium ion batteries. ACS Nano 2013, 7, 6948–6954.CrossRefGoogle Scholar
  27. [27]
    Zhou, W. W.; Cheng, C. W.; Liu, J. P.; Tay, Y. Y.; Jiang, J.; Jia, X. T.; Zhang, J. X.; Gong, H.; Hng, H. H.; Yu, T. et al. Lithium-ion batteries: Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.CrossRefGoogle Scholar
  28. [28]
    Wang, Y. L.; Xu, J. J.; Wu, H.; Xu, M.; Peng, Z. P.; Zheng, G. F. Hierarchical SnO2-Fe2O3 heterostructures as lithium-ion battery anodes. J. Mater. Chem. 2012, 22, 21923–21927.CrossRefGoogle Scholar
  29. [29]
    Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z. Z.; Tour, J. M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 2010, 4, 2059–2069.CrossRefGoogle Scholar
  30. [30]
    Liu, B.; Chia, Z. W.; Lee, Z. Y.; Cheng, C. H.; Lee, J. Y.; Liu, Z. L. The importance of water in the polyol synthesis of carbon supported platinum-tin oxide catalysts for ethanol electrooxidation. J. Power Sources 2012, 206, 97–102.CrossRefGoogle Scholar
  31. [31]
    Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.CrossRefGoogle Scholar
  32. [32]
    Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X. T.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z. F.; Smith, D. J.; Okuno, Y. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773–2778.CrossRefGoogle Scholar
  33. [33]
    Utsumi, S.; Honda, H.; Hattori, Y.; Kanoh, H.; Takahashi, K.; Sakai, H.; Abe, M.; Yudasaka, M.; Iijima, S.; Kaneko, K. Direct evidence on C-C single bonding in single-wall carbon nanohorn aggregates. J. Phys. Chem. C 2007, 111, 5572–5575.CrossRefGoogle Scholar
  34. [34]
    Jiang, Y. Z.; Yuan, T. Z.; Sun, W. P.; Yan, M. Electrostatic spray deposition of porous SnO2/graphene anode films and their enhanced lithium-storage properties. ACS Appl. Mater. Interfaces 2012, 4, 6216–6220.CrossRefGoogle Scholar
  35. [35]
    Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  36. [36]
    Qian, D. N.; Xu, B.; Cho, H. M.; Hatsukade, T.; Carroll, K. J.; Meng, Y. S. Lithium lanthanum titanium oxides: A fast ionic conductive coating for lithium-ion battery cathodes. Chem. Mater. 2012, 24, 2744–2751.CrossRefGoogle Scholar
  37. [37]
    Chang, K.; Chen, W. X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720–4728.CrossRefGoogle Scholar
  38. [38]
    Verma, P.; Maire, P.; Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 2010, 55, 6332–6341.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryRice UniversityHoustonUSA
  2. 2.Richard E. Smalley Institute for Nanoscale Science and TechnologyRice UniversityHoustonUSA
  3. 3.Department of Materials Science and NanoEngineeringRice UniversityHoustonUSA

Personalised recommendations