Advertisement

Nano Research

, Volume 7, Issue 8, pp 1232–1240 | Cite as

High thermal conductivity of suspended few-layer hexagonal boron nitride sheets

  • Haiqing Zhou
  • Jixin Zhu
  • Zheng Liu
  • Zheng Yan
  • Xiujun Fan
  • Jian Lin
  • Gunuk Wang
  • Qingyu Yan
  • Ting Yu
  • Pulickel M. Ajayan
  • James M. Tour
Research Article

Abstract

The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for monolayer (1L), bilayer (2L) and nine-layer (9L) h-BN sheets were measured to be −(3.41 ± 0.12) × 10−2, −(3.15 ± 0.14) × 10−2 and −(3.78 ± 0.16) × 10−2 cm−1·K−1, respectively. The room-temperature thermal conductivity of few-layer h-BN sheets was found to be in the range from 227 to 280 W·m−1·K−1, which is comparable to that of bulk h-BN, indicating their potential use as important components to solve heat dissipation problems in thermal management configurations.

Keywords

two-dimensional hexagonal boron nitride (h-BN) thermal conductivity Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_486_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.14 MB.

References

  1. [1]
    Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.CrossRefGoogle Scholar
  2. [2]
    Alem, N.; Erni, R.; Kisielowski, C.; Rossell, M. D.; Gannett, W.; Zettl, A. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 2009, 80, 155425.CrossRefGoogle Scholar
  3. [3]
    Gannett, W.; Regan, W.; Watanabe, K.; Taniguchi, T.; Crommie, M. F.; Zettl, A. Boron nitride substrates for high mobility chemical vapor deposited grapheme. Appl. Phys. Lett. 2011, 98, 242105.CrossRefGoogle Scholar
  4. [4]
    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.CrossRefGoogle Scholar
  5. [5]
    Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.CrossRefGoogle Scholar
  6. [6]
    Wang, M.; Jang, S. K.; Jang, W. J.; Kim, M.; Park, S. Y.; Kim, S. W.; Kahng, S. J.; Choi, J. Y.; Ruoff, R. S.; Song, Y. J. et al. A platform for large-scale graphene electronics — CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 2013, 25, 2746–2752.CrossRefGoogle Scholar
  7. [7]
    Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889–2893.CrossRefGoogle Scholar
  8. [8]
    Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.CrossRefGoogle Scholar
  9. [9]
    Lipp, A.; Schwetz, K. A.; Hunold, K. Hexagonal boron nitride: Fabrication, properties and applications. J. Eur. Ceram. Soc. 1989, 5, 3–9.CrossRefGoogle Scholar
  10. [10]
    Kho, J. G.; Moon, K. T.; Kim, J. H.; Kim, D. P. Properties of boron nitride (BxNy) films produced by the spin-coating process of polyborazine. J. Am. Ceram. Soc. 2000, 83, 2681–2683.CrossRefGoogle Scholar
  11. [11]
    Chen, Y.; Zou, J.; Campbell, S. J.; Caer, G. L. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 2004, 84, 2430.CrossRefGoogle Scholar
  12. [12]
    Chang, C. W.; Han, W. Q.; Zettl, A. Thermal conductivity of B-C-N and BN nanotubes. Appl. Phys. Lett. 2005, 86, 173102.CrossRefGoogle Scholar
  13. [13]
    Chang, C. W.; Fennimore, A. M.; Afanasiev, A.; Okawa, D.; Ikuno, T.; Garcia, H.; Li, D. Y.; Majumdar, A.; Zettl, A. Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys. Rev. Lett. 2006, 97, 085901.CrossRefGoogle Scholar
  14. [14]
    Lindsay, L.; Broido, D. A. Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes. Phys. Rev. B 2012, 85, 035436.CrossRefGoogle Scholar
  15. [15]
    Ouyang, T.; Chen, Y. P.; Xie, Y.; Yang, K. K.; Bao, Z. G.; Zhong, J. X. Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology 2010, 21, 245701.CrossRefGoogle Scholar
  16. [16]
    Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.CrossRefGoogle Scholar
  17. [17]
    Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M. S.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.CrossRefGoogle Scholar
  18. [18]
    Lee, K. H.; Shin, H. J.; Lee, J.; Lee, I.; Kim, G. H.; Choi, J. Y.; Kim, S. W. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 2012, 12, 714–718.CrossRefGoogle Scholar
  19. [19]
    Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Dresselhaus, M.; Palacios, T.; Kong, J. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 2012, 6, 8583–8590.CrossRefGoogle Scholar
  20. [20]
    Kim, G.; Jang, A. R.; Jeong, H. Y.; Lee, Z.; Kang, D. J.; Shin, H. S. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 2013, 13, 1834–1839.Google Scholar
  21. [21]
    Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.CrossRefGoogle Scholar
  22. [22]
    Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627–632.CrossRefGoogle Scholar
  23. [23]
    Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 2013, 13, 550–554.CrossRefGoogle Scholar
  24. [24]
    Liu, Z.; Song, L.; Zhao, S. Z.; Huang, J. Q.; Ma, L. L.; Zhang, J. N.; Lou, J.; Ajayan, P. M. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 2011, 11, 2032–2037.CrossRefGoogle Scholar
  25. [25]
    Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.CrossRefGoogle Scholar
  26. [26]
    Liu, Z.; Ma, L. L.; Shi, G.; Zhou, W.; Gong, Y. J.; Lei, S. D.; Yang, X. B.; Zhang, J. N.; Yu, J. J.; Hackenberg, K. P. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 2013, 8, 119–124.CrossRefGoogle Scholar
  27. [27]
    Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and raman signatures. Small 2011, 7, 465–468.CrossRefGoogle Scholar
  28. [28]
    Park, K. S.; Lee, D. Y.; Kim, K. J.; Moon, D. W. Observation of a hexagonal BN surface layer on the cubic BN film grown by dual ion beam sputter deposition. Appl. Phys. Lett. 1997, 70, 315.CrossRefGoogle Scholar
  29. [29]
    Lee, K. S.; Kim, Y. S.; Tosa, M.; Kasahara, A.; Yosihara, K. Mechanical properties of hexagonal boron nitride synthesized from film of Cu/BN mixture by surface segregation. Appl. Surf. Sci. 2001, 169–170, 420–424.CrossRefGoogle Scholar
  30. [30]
    Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron Nitride Nanotubes. Science 1995, 269, 966–967.CrossRefGoogle Scholar
  31. [31]
    Mayer, J. C.; Chuvilin, A.; Algara-Siller, G.; Biskupek, J.; Kaiser, U. Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 2009, 9, 2683–2689.CrossRefGoogle Scholar
  32. [32]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.CrossRefGoogle Scholar
  33. [33]
    Lee, J. U.; Yoon, D.; Kim, H.; Lee, S. W.; Cheong, H. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B 2011, 83, 081419.CrossRefGoogle Scholar
  34. [34]
    Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.CrossRefGoogle Scholar
  35. [35]
    Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature dependent Raman studies and thermal conductivity of few layer MoS2. J Phys. Chem. C 2013, 117, 9042–9047.CrossRefGoogle Scholar
  36. [36]
    Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer graphene materials. Nat. Mater. 2010, 9, 555–558.CrossRefGoogle Scholar
  37. [37]
    Lindsay, L.; Broido, D. A.; Mingo, N. Flexural phonons and thermal transport in multilayer graphene and graphite. Phys. Rev. B 2011, 83, 235428.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryRice UniversityHoustonUSA
  2. 2.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversityNanyangSingapore
  3. 3.Department of Materials Science and NanoEngineeringRice UniversityHoustonUSA
  4. 4.School of Materials Science and EngineeringNanyang Technological UniversityNanyang Avenue, NanyangSingapore
  5. 5.College of Electronic Information and Control EngineeringBeijing University of TechnologyBeijingChina
  6. 6.The Smalley Institute for Nanoscale Science and TechnologyRice UniversityHoustonUSA

Personalised recommendations