Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy

  • 578 Accesses

  • 10 Citations


Live observations of growing nanowires using in situ transmission electron microscopy (TEM) is becoming an increasingly important tool for understanding the dynamic processes occurring during nanowire growth. Here we present observations of growing InAs nanowires, which constitute the first reported in situ growth of a In-V compound in a transmission electron microscope. Real time observations of events taking place over longer growth lengths were possible due to the high growth rates of up to 1 nm/s that were achieved. Straight growth (mainly in 〈111〉B directions) was observed at uniform temperature and partial pressure while intentional fluctuations in these conditions caused the nanowires to form kinks and change growth direction. The mechanisms behind the kinking are discussed in detail. In situ observations of nanowire kinking has previously only been reported for nonpolar diamond structure type materials (such as Si), but here we present results for a polar zinc blende structure (InAs). In this study a closed cell with electron and X-ray transparent a-SiN windows was used in a conventional high resolution transmission electron microscope, enabling high resolution imaging and compositional analysis in between the growth periods.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. [1]

    Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.

  2. [2]

    Svensson, C. P. T.; Mårtensson, T.; Trägårdh, J.; Larsson, C.; Rask, M.; Hessman, D.; Samuelson, L.; Ohlsson, J. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology 2008, 19, 305201.

  3. [3]

    Nadj-Perge, S.; Frolov, S. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Spin-orbit qubit in a semiconductor nanowire. Nature 2010, 468, 1084–1087.

  4. [4]

    Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 2012, 336, 1003–1007.

  5. [5]

    Deng, M. T.; Yu, C. L.; Huang, G. Y.; Larsson, M.; Caroff, P.; Xu, H. Q. Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. Nano Lett. 2012, 12, 6414–6419.

  6. [6]

    Oh, S. H.; Chisholm, M. F.; Kauffmann, Y.; Kaplan, W. D.; Luo, W. D.; Rühle, M.; Scheu, C. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires. Science 2010, 330, 489–493.

  7. [7]

    Gamalski, A. D.; Ducati, C.; Hofmann, S. Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth. J. Phys. Chem. C 2011, 115, 4413–4417.

  8. [8]

    Wen, C.-Y.; Tersoff, J.; Hillerich, K.; Reuter, M. C.; Park, J. H.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys. Rev. Lett. 2011, 107, 025503.

  9. [9]

    Wen, C.-Y.; Reuter, M. C.; Bruley, J.; Tersoff, J.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 2009, 326, 1247–1250.

  10. [10]

    Dick, K. A.; Kodambaka, S.; Reuter, M. C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L. R.; Ross, F. M. The morphology of axial and branched nanowire heterostructures. Nano Lett. 2007, 7, 1817–1822.

  11. [11]

    Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Nørskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.

  12. [12]

    Sharma, R.; Rez, P.; Treacy, M. M. J.; Stuart, S. J. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J. Electron Microsc. 2005, 54, 231–237.

  13. [13]

    Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Atomic-scale in-situ observations of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082–2086.

  14. [14]

    Ross, F. M.; Tersoff, J.; Reuter, M. C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 2005, 95, 146104.

  15. [15]

    Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.

  16. [16]

    Chou, Y.-C.; Hillerich, K.; Tersoff, J.; Reuter, M. C.; Dick, K. A.; Ross, F. M. Atomic-scale variability and control of III-V nanowire growth kinetics. Science 2014, 343, 281–284.

  17. [17]

    Stach, E. A.; Pauzauskie, P. J.; Kuykendall, T.; Goldberger, J.; He, R. R.; Yang, P. D. Watching GaN nanowires grow. Nano Lett. 2003, 3, 867–869.

  18. [18]

    Park, H. D.; Prokes, S. M.; Cammarata, R. C. Growth of epitaxial InAs nanowires in a simple closed system. Appl. Phys. Lett. 2005, 87, 063110.

  19. [19]

    Heurlin, M.; Magnusson, M. H.; Lindgren, D.; Ek, M.; Wallenberg, L. R.; Deppert, K.; Samuelson, L. Continuous gas-phase synthesis of nanowires with tunable properties. Nature 2012, 492, 90–94.

  20. [20]

    Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

  21. [21]

    Barns, R. L.; Ellis, W. C. Whisker crystals of gallium arsenide and gallium phosphide grown by the vapor-liquid-solid mechanism. J. Appl. Phys. 1965, 36, 2296–2301.

  22. [22]

    Messing, M. E.; Hillerich, K.; Johansson, J.; Deppert, K.; Dick, K. A. The use of gold for fabrication of nanowire structures. Gold Bull. 2009, 42, 172–181.

  23. [23]

    Persson, A. I.; Larsson, M. W.; Stenström, S.; Ohlsson, B. J.; Samuelson, L.; Wallenberg, L. R. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 2004, 3, 677–681.

  24. [24]

    Glas, F.; Harmand, J.-C.; Patriarche, G. Nucleation antibunching in catalyst-assisted nanowire growth. Phys. Rev. Lett. 2010, 104, 135501.

  25. [25]

    Madras, P.; Dailey, E.; Drucker, J. Kinetically induced kinking of vapor-liquid-solid grown epitaxial Si nanowires. Nano Lett. 2009, 9, 3826–3830.

  26. [26]

    Hillerich, K.; Dick, K. A.; Wen, C.-Y.; Reuter, M. C.; Kodambaka, S.; Ross, F. M. Strategies to control morphology in hybrid group III–V/group IV heterostructure nanowires. Nano Lett. 2013, 13, 903–908.

  27. [27]

    Wacaser, B. A.; Deppert, K.; Karlsson, L. S.; Samuelson, L.; Seifert, W. Growth and characterization of defect free GaAs nanowires. J. Cryst. Growth 2006, 287, 504–508.

  28. [28]

    Gamalski, A. D.; Tersoff, J.; Sharma, R.; Ducati, C.; Hofmann, S. Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. Nano Lett. 2010, 10, 2972–2976.

  29. [29]

    Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.

  30. [30]

    Dayeh, S. A.; Wang, J.; Li, N.; Huang, J. Y.; Gin, A. V; Picraux, S. T. Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures. Nano Lett. 2011, 11, 4200–4206.

  31. [31]

    Schwarz, K.; Tersoff, J.; Kodambaka, S.; Chou, Y.-C.; Ross, F. M. Geometrical frustration in nanowire growth. Phys. Rev. Lett. 2011, 107, 265502.

  32. [32]

    Shin, N.; Filler, M. A. Controlling silicon nanowire growth direction via surface chemistry. Nano Lett. 2012, 12, 2865–2870.

  33. [33]

    Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.

Download references

Author information

Correspondence to Filip Lenrick or L. Reine Wallenberg.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lenrick, F., Ek, M., Deppert, K. et al. Straight and kinked InAs nanowire growth observed in situ by transmission electron microscopy. Nano Res. 7, 1188–1194 (2014) doi:10.1007/s12274-014-0481-4

Download citation


  • environmental TEM
  • nanowires
  • in situ
  • InAs
  • group III–V
  • kinking