Advertisement

Nano Research

, Volume 7, Issue 6, pp 917–928 | Cite as

Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting

  • Qingliang Liao
  • Zheng Zhang
  • Xiaohui Zhang
  • Markus Mohr
  • Yue Zhang
  • Hans-Jörg Fecht
Research Article

Abstract

We present a novel, low-cost approach to fabricate flexible piezoelectric nanogenerators (NGs) consisting of ZnO nanowires (NWs) on carbon fibers and foldable Au-coated ZnO NWs on paper. By using such designed structure of the NGs, the radial ZnO NWs on a cylindrical fiber can be utilized fully and the electrical output of the NG is improved. The electrical output behavior of the NGs can be optionally controlled by increasing the fiber number, adjusting the strain rate and connection modes. For the single-fiber based NGs, the output voltage is 17 mV and the current density is about 0.09 μA·cm−2, and the electrical output is enhanced greatly compared to that of previous similar micro-fiber based NGs. Compared with the single-fiber based NGs, the output current of the multi-fiber based NGs made of 200 carbon fibers increased 100-fold. An output voltage of 18 mV and current of 35 nA are generated from the multi-fiber based NGs. The electrical energy generated by the NGs is enough to power a practical device. The developed novel NGs can be used for smart textile structures, wearable and self-powered nanodevices.

Keywords

ZnO nanowires hybrid structure flexible nanogenerators piezotronic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_453_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1.18 MB.

References

  1. [1]
    Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–890.CrossRefGoogle Scholar
  2. [2]
    Wang, Z. L. Self-powering nanotech. Sci. Am. 2008, 298, 82–87.CrossRefGoogle Scholar
  3. [3]
    Wang, Z. L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.CrossRefGoogle Scholar
  4. [4]
    Wang, X.; Song J.; Liu J.; Wang Z. L. DC nanogenerator driven by ultrasonic wave. Science 2007, 316, 102–105.CrossRefGoogle Scholar
  5. [5]
    Li, Z.; Wang Z. L. Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv. Mater. 2011, 23, 84–89.CrossRefGoogle Scholar
  6. [6]
    Li, Z.; Zhu, G.; Yang, R.; Wang, A. C.; Wang, Z. L. Muscle-driven in vivo nanogenerator. Adv. Mater. 2010, 22, 2534–2537.CrossRefGoogle Scholar
  7. [7]
    Zhu, G.; Lin, Z.; Jing, Q.; Bai, P.; Pan, C.; Yang, Y.; Zhou, Y.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.CrossRefGoogle Scholar
  8. [8]
    Zhu, G.; Yang, R.; Wang, S.; Wang, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151–3155.CrossRefGoogle Scholar
  9. [9]
    Hu, Y.; Zhang, Y.; Xu, C.; Zhu, G.; Wang, Z. L. High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 2010, 10, 5025–5031.CrossRefGoogle Scholar
  10. [10]
    Zhu, G.; Wang, A. C.; Liu, Y.; Zhou, Y.; Wang, Z. L. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 2012, 12, 3086–3090.CrossRefGoogle Scholar
  11. [11]
    Wang, Z. L. Piezoelectric nanostructures: From growth phenomena to electric nanogenerators. Mater. Res. Soc. Bull. 2007, 32, 109–116.CrossRefGoogle Scholar
  12. [12]
    Zhang, Y.; Yan, X.; Yang, Y.; Huang, Y.; Liao, Q.; Qi, J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.CrossRefGoogle Scholar
  13. [13]
    Yang, R.; Qin, Y.; Dai, L.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.CrossRefGoogle Scholar
  14. [14]
    Qin, Y.; Wang, X.; Wang, Z. L. Microfiber-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.CrossRefGoogle Scholar
  15. [15]
    Lee, M.; Chen, C. Y.; Wang, S. H.; Cha, S. N.; Park, Y. J.; Kim, J. M.; Chou, L. J.; Wang, Z. L. A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 2012, 24, 1759–1764.CrossRefGoogle Scholar
  16. [16]
    Pan, C.; Li, Z.; Guo, W.; Zhu, J.; Wang, Z. L. Fiber-based hybrid nanogenerators for/as self-powered systems in biological liquid. Angew. Chem. Int. Ed. 2011, 50, 11192–11196.CrossRefGoogle Scholar
  17. [17]
    Kumar, A.; Gullapalli, H.; Balakrishnan, K.; Botello-Mendez, A.; Vajtai, R.; Terrones, M.; Ajayan, P. M. Flexible ZnO-cellulose nanocomposite for multisource energy conversion. Small 2011, 7, 2173–2178.CrossRefGoogle Scholar
  18. [18]
    Kim, K. H.; Lee, K. Y.; Seo, J. S.; Kumar, B.; Kim, S. W. Paper-based piezoelectric nanogenerators with high thermal stability. Small 2011, 7, 2577–2580.CrossRefGoogle Scholar
  19. [19]
    Qiu, Y.; Zhang, H.; Hu, L.; Yang, D.; Wang, L.; Wang, B.; Ji, J.; Liu, G.; Liu, X.; Lin, J.; Li, F.; Han, S. Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates. Nanoscale 2012, 4, 6568–6573.CrossRefGoogle Scholar
  20. [20]
    Chen, H.; Zhu, L.; Liu, H.; Li, W. Growth of ZnO nanowires on fibers for one-dimensional flexible quantum dot-sensitized solar cells. Nanotechnology 2012, 23, 075402.CrossRefGoogle Scholar
  21. [21]
    Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231–1236.CrossRefGoogle Scholar
  22. [22]
    Gao, Y. F.; Wang, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 2007, 7, 2499–2505.CrossRefGoogle Scholar
  23. [23]
    Gullapalli, H. V.; Vemuru, S. M.; Kumar, A.; Botello-Mendez, A.; Vajtai, R.; Terrones, M.; Nagarajaiah, S.; Ajayan, P. M. Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small 2010, 6, 1641–1646.CrossRefGoogle Scholar
  24. [24]
    Wang, Z. L. From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.CrossRefGoogle Scholar
  25. [25]
    Yang, R. S.; Qin, Y.; Li, C.; Dai, L. M.; Wang, Z. L. Characteristics of output voltage and current of integrated nanogenerators. Appl. Phys. Lett. 2009, 94, 022905.CrossRefGoogle Scholar
  26. [26]
    Chang, C.; Tran, V. H.; Wang, J.; Fuh, Y.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.CrossRefGoogle Scholar
  27. [27]
    Xu, S.; Wei, Y.; Liu, J.; Yang, R.; Wang, Z. L. Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. Nano Lett. 2008, 8, 4027–4032.CrossRefGoogle Scholar
  28. [28]
    Polyakov, A. Y.; Smirnov, N. B.; Kozhukhova, E. A.; Vdovin, V. I.; Ip, K.; Heo, Y. W.; Norton, D. P.; Pearton, S. Electrical characteristics of Au and Ag Schottky contacts on n-ZnO. Appl. Phys. Lett. 2003, 83, 1575–1577.CrossRefGoogle Scholar
  29. [29]
    Hasegawa, S.; Nishida, S.; Yamashita, T.; Asahi, H. Field electron emission from polycrystalline GaN nanorods. J. Ceramic Proc. Res. 2005, 6, 245–249.Google Scholar
  30. [30]
    Periasamy, C.; Chakrabarti, P. Time-dependent degradation of Pt/ZnO nanoneedle rectifying contact based piezoelectric nanogenerator. J. Appl. Phys. 2011, 109, 054306.CrossRefGoogle Scholar
  31. [31]
    Hsu, C.; Chen, K. Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. J. Phys. Chem. C 2012, 116, 9351–9355.CrossRefGoogle Scholar
  32. [32]
    Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Qingliang Liao
    • 1
  • Zheng Zhang
    • 1
  • Xiaohui Zhang
    • 1
  • Markus Mohr
    • 2
  • Yue Zhang
    • 1
  • Hans-Jörg Fecht
    • 2
  1. 1.Department of Materials Physics and Chemistry, State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Institute of Micro and NanomaterialsUlm UniversityUlmGermany

Personalised recommendations