Advertisement

Nano Research

, Volume 7, Issue 6, pp 860–868 | Cite as

Enhanced photoresponse of Cu2O/ZnO heterojunction with piezo-modulated interface engineering

  • Pei Lin
  • Xiang Chen
  • Xiaoqin Yan
  • Zheng Zhang
  • Haoge Yuan
  • Peifeng Li
  • Yanguang Zhao
  • Yue Zhang
Research Article

Abstract

The ability to arbitrarily regulate semiconductor interfaces provides the most effective way to modulate the performance of optoelectronic devices. However, less work has been reported on piezo-modulated interface engineering in all-oxide systems. In this paper, an enhanced photoresponse of an all-oxide Cu2O/ZnO heterojunction was obtained by taking advantage of the piezotronic effect. The illumination density-dependent piezoelectric modulation ability was also comprehensively investigated. An 18.6% enhancement of photoresponse was achieved when applying a −0.88% compressive strain. Comparative experiments confirmed that this enhancement could be interpreted in terms of the band modification induced by interfacial piezoelectric polarization. The positive piezopotential generated at the ZnO side produces an increase in space charge region in Cu2O, thus providing an extra driving force to separate the excitons more efficiently under illumination. Our research provides a promising method to boost the performance of optoelectronics without altering the interface structure and could be extended to other metal oxide devices.

Keywords

all-oxide device piezotronic effect interface modulation enhanced photoresponse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_447_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.09 MB.

References

  1. [1]
    Mannhart, J.; Schlom, D. G. Oxide interfaces—An opportunity for electronics. Science 2010, 327, 1607–1611.CrossRefGoogle Scholar
  2. [2]
    Hammerl, G.; Spaldin, N. Shedding light on oxide interfaces. Science 2011, 332, 922–923.CrossRefGoogle Scholar
  3. [3]
    Graetzel, M.; Janssen, R. A. J.; Mitzi, D. B.; Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 2012, 488, 304–312.CrossRefGoogle Scholar
  4. [4]
    Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater. 2012, 11, 103–113.CrossRefGoogle Scholar
  5. [5]
    Han, N.; Wang, F. Y.; Hou, J. J.; Xiu, F.; Yip, S.; Hui, A. T.; Hung, T.; Ho, J. C. Controllable p-n switching behaviors of GaAs nanowires via an interface effect. ACS Nano 2012, 6, 4428–4433.CrossRefGoogle Scholar
  6. [6]
    Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P. Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. J. Am. Chem. Soc. 2009, 131, 16851–16857.CrossRefGoogle Scholar
  7. [7]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  8. [8]
    Shalom, M.; Rühle, S.; Hod, I.; Yahav, S.; Zaban, A. Energy level alignment in CdS quantum dot sensitized solar cells using molecular dipoles. J. Am. Chem. Soc. 2009, 131, 9876–9877.CrossRefGoogle Scholar
  9. [9]
    Rühle, S.; Anderson, A. Y.; Barad, H.-N.; Kupfer, B.; Bouhadana, Y.; Rosh-Hodesh, E.; Zaban, A. All-oxide photovoltaics. J. Phys. Chem. Lett. 2012, 3, 3755–3764.CrossRefGoogle Scholar
  10. [10]
    Yuhas, B. D.; Yang, P. D. Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 2009, 131, 3756–3761.CrossRefGoogle Scholar
  11. [11]
    Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.CrossRefGoogle Scholar
  12. [12]
    McShane, C. M.; Siripala, W. P.; Choi, K.-S. Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells. J. Phys. Chem. Lett. 2010, 1, 2666–2670.CrossRefGoogle Scholar
  13. [13]
    Choi, K.-S. Shape effect and shape control of polycrystalline semiconductor electrodes for use in photoelectrochemical cells. J. Phys. Chem. Lett. 2010, 1, 2244–2250.CrossRefGoogle Scholar
  14. [14]
    Zhang, X.-M.; Lu, M.-Y.; Zhang, Y.; Chen, L.-J.; Wang, Z. L. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 2009, 21, 2767–2770.CrossRefGoogle Scholar
  15. [15]
    Yang, Y.; Guo, W.; Wang, X. Q.; Wang, Z. Z.; Qi, J. J.; Zhang, Y. Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Lett. 2012, 12, 1919–1922.CrossRefGoogle Scholar
  16. [16]
    Shi, J.; Starr, M. B.; Wang, X. D. Band structure engineering at heterojunction interfaces via the piezotronic effect. Adv. Mater. 2012, 24, 4683–4691.CrossRefGoogle Scholar
  17. [17]
    Lin, P.; Yan, X. Q.; Zhang, Z.; Shen, Y. W.; Zhao, Y. G.; Bai, Z. M.; Zhang, Y. Self-powered UV photosensor based on PEDOT: PSS/ZnO micro/nanowire with strain-modulated photoresponse. ACS Appl. Mater. Interfaces 2013, 5, 3671–3676.CrossRefGoogle Scholar
  18. [18]
    Yang, Q.; Wang, W. H.; Xu, S.; Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 2011, 11, 4012–4017.CrossRefGoogle Scholar
  19. [19]
    Yang, Y.; Guo, W. X.; Zhang, Y.; Ding, Y.; Wang, X.; Wang, Z. L. Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells. Nano Lett. 2011, 11, 4812–4817.CrossRefGoogle Scholar
  20. [20]
    Shi, J.; Zhao, P.; Wang, X. D. Piezoelectric-polarization-enhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 2013, 25, 916–921.CrossRefGoogle Scholar
  21. [21]
    Jiang, T. F.; Xie, T. F.; Chen, L. P.; Fu, Z. W.; Wang, D. J. Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance. Nanoscale 2013, 5, 2938–2944.CrossRefGoogle Scholar
  22. [22]
    Zoolfakar, A. S.; Rani, R. A.; Morfa, A. J.; Balendhran, S.; O’Mullane, A. P.; Zhuiykov, S.; Kalantar-zadeh, K. Enhancing the current density of electrodeposited ZnO-Cu2O solar cells by engineering their heterointerfaces. J. Mater. Chem. 2012, 22, 21767–21775.CrossRefGoogle Scholar
  23. [23]
    Deo, M.; Mujawar, S.; Game, O.; Yengantiwar, A.; Banpurkar, A.; Kulkarni, S.; Jog, J.; Ogale, S. Strong photo-response in a flip-chip nanowire p-Cu2O/n-ZnO junction. Nanoscale 2011, 3, 4706–4712.CrossRefGoogle Scholar
  24. [24]
    Musselman, K. P.; Marin, A.; Schmidt-Mende, L.; MacManus-Driscoll, J. L. Incompatible length scales in nanostructured Cu2O solar cells. Adv. Funct. Mater. 2012, 22, 2202–2208.CrossRefGoogle Scholar
  25. [25]
    Zhu, R.; Zhang, W. G.; Li, C.; Yang, R. S. Uniform zinc oxide nanowire arrays grown on nonepitaxial surface with general orientation control. Nano Lett. 2013, 13, 5171–5176.CrossRefGoogle Scholar
  26. [26]
    Hu, Y. F.; Zhang, Y.; Xu, C.; Lin, L.; Snyder, R. L.; Wang, Z. L. Self-powered system with wireless data transmission. Nano Lett. 2011, 11, 2572–2577.CrossRefGoogle Scholar
  27. [27]
    Chen, X.; Yan, X. Q.; Bai, Z. M.; Lin, P.; Shen, Y. W.; Zheng, X.; Feng, Y. Y.; Zhang, Y. Facile fabrication of large-scale patterned ZnO nanorod arrays with tunable arrangement, period and morphology. CrystEngComm 2013, 15, 8022–8028.CrossRefGoogle Scholar
  28. [28]
    Chen, X.; Yan, X. Q.; Bai, Z. M.; Shen, Y. W.; Wang, Z. Z.; Dong, X. Z.; Duan, X. M.; Zhang, Y. High-throughput fabrication of large-scale highly ordered ZnO nanorod arrays via three-beam interference lithography. CrystEngComm 2013, 15, 8416–8421.CrossRefGoogle Scholar
  29. [29]
    Cheng, K.; Li, Q. Q.; Meng, J.; Han, X.; Wu, Y. Q.; Wang, S. J.; Qian, L.; Du, Z. L. Interface engineering for efficient charge collection in Cu2O/ZnO heterojunction solar cells with ordered zno cavity-like nanopatterns. Sol. Energ. Mat. Sol. C. 2013, 116, 120–125.CrossRefGoogle Scholar
  30. [30]
    Mao, Y. C.; He, J. T.; Sun, X. F.; Li, W.; Lu, X. H.; Gan, J. Y.; Liu, Z. Q.; Gong, L.; Chen, J.; Liu, P.; et al. Electrochemical synthesis of hierarchical Cu2O stars with enhanced photoelectrochemical properties. Electrochim. Acta 2012, 62, 1–7.CrossRefGoogle Scholar
  31. [31]
    Lv, P. W.; Lin, L. M.; Zheng, W. F.; Zheng, M. Z.; Lai, F. C. Photosensitivity of ZnO/Cu2O thin film heterojunction. Optik 2013, 124, 2654–2657.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pei Lin
    • 1
  • Xiang Chen
    • 1
  • Xiaoqin Yan
    • 1
  • Zheng Zhang
    • 1
  • Haoge Yuan
    • 1
  • Peifeng Li
    • 1
  • Yanguang Zhao
    • 1
  • Yue Zhang
    • 1
    • 2
  1. 1.State Key Laboratory for Advanced Metals and Materials, School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Key Laboratory of New Energy Materials and TechnologiesUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations