Nano Research

, Volume 7, Issue 6, pp 844–852 | Cite as

Inhibitory activity of gold and silica nanospheres to vascular endothelial growth factor (VEGF)-mediated angiogenesis is determined by their sizes

Research Article

Abstract

Nanoparticles can be involved in biological activities such as apoptosis, angiogenesis, and oxidative stress by themselves. In particular, inorganic nanoparticles such as gold and silica nanoparticles are known to inhibit vascular endothelial growth factor (VEGF)-mediated pathological angiogenesis. In this study, we show that anti-angiogenic effect of inorganic nanospheres is determined by their sizes. We demonstrate that 20 nm size gold and silica nanospheres suppress VEGF-induced activation of VEGF receptor-2, in vitro angiogenesis, and in vivo pathological angiogenesis more efficiently than their 100 nm size counterparts. Our results suggest that modulation of the size of gold and silica nanospheres determines their inhibitory activity to VEGF-mediated angiogenesis.

Keywords

nanospheres anti-angiogenesis effects inorganic nanoparticles vascular endothelial growth factor pathological angiogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_445_MOESM1_ESM.pdf (1.9 mb)
Supplementary material, approximately 1.89 MB.

References

  1. [1]
    Jo, D. H.; Kim, J. H.; Lee, T. G.; Kim, J. H. Nanoparticles in the treatment of angiogenesis-related blindness. J. Ocul. Pharmacol. Th. 2013, 29, 135–142.CrossRefGoogle Scholar
  2. [2]
    Jo, D. H.; Lee, T. G.; Kim, J. H. Nanotechnology and nanotoxicology in retinopathy. Int. J. Mol. Sci. 2011, 12, 8288–8301.CrossRefGoogle Scholar
  3. [3]
    Bhattacharya, R.; Mukherjee, P.; Xiong, Z.; Atala, A.; Soker, S.; Mukhopadhyay, D. Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Lett. 2004, 4, 2479–2481.CrossRefGoogle Scholar
  4. [4]
    Kim, J. H.; Kim, M. H.; Jo, D. H.; Yu, Y. S.; Lee, T. G.; Kim, J. H. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials 2011, 32, 1865–1871.CrossRefGoogle Scholar
  5. [5]
    Jo, D. H.; Kim, J. H.; Yu, Y. S.; Lee, T. G.; Kim. J. H. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomed. Nanotechnol. 2012, 8, 784–791.CrossRefGoogle Scholar
  6. [6]
    Kalishwaralal, K.; Banumathi, E.; Ram Kumar Pandian, S.; Deepak, V.; Muniyandi, J.; Eom, S. H.; Gurunathan, S. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids. Surf. B 2009, 73, 51–57.CrossRefGoogle Scholar
  7. [7]
    Arvizo, R. R.; Saha, S.; Wang, E.; Robertson, J. D.; Bhattacharya, R.; Mukherjee, P. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proc. Natl. Acad. Sci. USA 2013, 110, 6700–6705.CrossRefGoogle Scholar
  8. [8]
    Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 2005, 438, 932–936.CrossRefGoogle Scholar
  9. [9]
    Arvizo, R. R.; Rana, S.; Miranda, O. R.; Bhattacharya, R.; Rotello, V. M.; Mukherjee, P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomed. Nanotechnol. 2011, 7, 580–587.CrossRefGoogle Scholar
  10. [10]
    Duan, X.; Li, Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 2013, 9, 1521–1532.CrossRefGoogle Scholar
  11. [11]
    Barreto, J. A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in cancer imaging and therapy. Adv. Mater. 2011, 23, H18–H40.CrossRefGoogle Scholar
  12. [12]
    Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceutics 2008, 5, 505–515.CrossRefGoogle Scholar
  13. [13]
    Davis, M. E.; Chen, Z. G.; Shin, D. M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug. Discov. 2008, 7, 771–782.CrossRefGoogle Scholar
  14. [14]
    Albanese, A.; Tang, P. S.; Chan, W. C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.CrossRefGoogle Scholar
  15. [15]
    Koo, H.; Moon, H.; Han, H.; Na, J. H.; Huh, M. S.; Park, J. H.; Woo, S. J.; Park, K. H.; Kwon, I. C.; Kim, K.; et al. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials 2012, 33, 3485–3493.CrossRefGoogle Scholar
  16. [16]
    Galluzzi, L.; Chiarantini, L.; Pantucci, E.; Curci, R.; Merikhi, J.; Hummel, H.; Bachmann, P. K.; Manuali, E.; Pezzotti, G.; Magnani, M. Development of a multilevel approach for the evaluation of nanomaterials’ toxicity. Nanomedicine (Lond) 2012, 7, 393–409.CrossRefGoogle Scholar
  17. [17]
    Ferrara, N.; Gerber, H. P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676.CrossRefGoogle Scholar
  18. [18]
    Hartlen, K. D.; Athanasopoulos, A. P.; Kitaev, V. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 2008, 24, 1714–1720.CrossRefGoogle Scholar
  19. [19]
    Quan, B.; Nam, G. E.; Choi, H. J.; Piao, Y. Synthesis of monodisperse hollow carbon nanocapsules by using protective silica shells. Chem. Asian J. 2013, 8, 765–770.CrossRefGoogle Scholar
  20. [20]
    Kim, J. H.; Kim, J. H.; Yu, Y. S.; Kim, D. H.; Kim, C. J.; Kim, K. W. Establishment and characterization of a novel, spontaneously immortalized retinoblastoma cell line with adherent growth. Int. J. Oncol. 2007, 31, 585–592.Google Scholar
  21. [21]
    Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.; Davis, A. P.; Dolinski, K.; Dwight, S. S.; Eppig, J. T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29.CrossRefGoogle Scholar
  22. [22]
    Edgar, R.; Domrachev, M.; Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucl. Acids Res. 2002, 30, 207–210.CrossRefGoogle Scholar
  23. [23]
    Kim, J. H.; Kim, J. H.; Yu, Y. S.; Park, K. H.; Kang, H. J.; Lee, H. Y.; Kim, K. W. Antiangiogenic effect of deguelin on choroidal neovascularization. J. Pharmacol. Exp. Ther. 2008, 324, 643–647.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dong Hyun Jo
    • 1
    • 2
  • Jin Hyoung Kim
    • 1
  • Jin Gyeong Son
    • 3
    • 4
  • Yuanze Piao
    • 5
    • 6
  • Tae Geol Lee
    • 3
  • Jeong Hun Kim
    • 1
    • 2
    • 7
  1. 1.Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research InstituteSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Biomedical Sciences, College of MedicineSeoul National UniversitySeoulRepublic of Korea
  3. 3.Center for Nano-Bio Convergence, World Class LaboratoryKorea Research Institute of Standards and ScienceDaejeonRepublic of Korea
  4. 4.Department of Chemistry and KI for the NanoCenturyKAISTDaejeonRepublic of Korea
  5. 5.Graduate School of Convergence Science and TechnologySeoul National UniversitySeoulKorea
  6. 6.Advanced Institutes of Convergence TechnologySuwonRepublic of Korea
  7. 7.Department of Ophthalmology, College of MedicineSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations