Nano Research

, Volume 7, Issue 6, pp 835–843 | Cite as

Single step fabrication of N-doped graphene/Si3N4/SiC heterostructures

  • Emilio Vélez-Fort
  • Emiliano Pallecchi
  • Mathieu G. Silly
  • Mounib Bahri
  • Gilles Patriarche
  • Abhay Shukla
  • Fausto Sirotti
  • Abdelkarim OuerghiEmail author
Research Article


In-plane heteroatom substitution of graphene is a promising strategy to modify its properties. The ability to dope graphene with electron-donor nitrogen heteroatoms is highly important for modulating electrical properties of graphene. Here we demonstrate a transfer-free method to directly grow large area quasi free-standing N-doped graphene bilayers on an insulating substrate (Si3N4). Electron-bombardment heating under nitrogen flux results in simultaneous growth of N-doped graphene and a Si3N4 layer on the SiC surface. The decoupling of N-doped graphene from the substrate and the presence of Si3N4 are identified by X-ray photoemission spectroscopy and low-energy electron diffraction. The substitution of nitrogen atoms in the graphene planes was confirmed using high resolution X-ray photoemission spectroscopy which reveals several atomic configurations for the nitrogen atoms: Graphitic-like, pyridine-like, and pyrroliclike. Furthermore, we demonstrated for the first time that N-doped graphene could be used to efficiently probe oxygen molecules via nitrogen atom defects.


epitaxial graphene spectroscopy nitrogen-doped graphene low-energy electron microscopy electronic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N., et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  3. [3]
    Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.CrossRefGoogle Scholar
  4. [4]
    Dlubak, B.; Martin, M.-B.; Deranlot, C.; Servet, B.; Xavier, S.; Mattana, R.; Sprinkle, M.; Berger, C.; De Heer, W. A.; Petroff, F., et al. Highly efficient spin transport in epitaxial graphene on SiC. Nat. Phys. 2012, 8, 557–561.CrossRefGoogle Scholar
  5. [5]
    Pedersen, T.; Flindt, C.; Pedersen, J.; Mortensen, N.; Jauho, A. P.; Pedersen, K. Graphene antidot lattices: Designed defects and spin qubits. Phys. Rev. Lett. 2008, 100, 136804.CrossRefGoogle Scholar
  6. [6]
    Zeng, M.; Shen, L.; Zhou, M.; Zhang, C.; Feng, Y. Graphene-based bipolar spin diode and spin transistor: Rectification and amplification of spin-polarized current. Phys. Rev. B 2011, 83, 115427.CrossRefGoogle Scholar
  7. [7]
    Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N., et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.CrossRefGoogle Scholar
  8. [8]
    Ouerghi, A.; Silly, M. G.; Marangolo, M.; Mathieu, C.; Eddrief, M.; Picher, M.; Sirotti, F.; El Moussaoui, S.; Belkhou, R. Large-area and high-quality epitaxial graphene on off-axis SiC wafers. ACS Nano 2012, 6, 6075–6082.CrossRefGoogle Scholar
  9. [9]
    Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B.; Naud, C.; Mallet, P.; Veuillen, J. Y.; Berger, C.; Conrad, E., et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99, 126805.CrossRefGoogle Scholar
  10. [10]
    Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.CrossRefGoogle Scholar
  11. [11]
    Virojanadara, C.; Watcharinyanon, S.; Zakharov, A. A.; Johansson, L. I. Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B 2010, 82, 205402.CrossRefGoogle Scholar
  12. [12]
    Wong, S. L.; Huang, H.; Wang, Y.; Cao, L.; Qi, D.; Santoso, I.; Chen, W.; Wee, A. T. S. Quasi-free-standing epitaxial graphene on SiC (0001) by fluorine intercalation from a molecular source. ACS Nano 2011, 5, 7662–7668.CrossRefGoogle Scholar
  13. [13]
    Wang, F.; Liu, G.; Rothwell, S.; Nevius, M.; Tejeda, A.; Taleb-Ibrahimi, A.; Feldman, L. C.; Cohen, P. I.; Conrad, E. H. Wide-gap semiconducting graphene from nitrogen-seeded SiC. Nano Lett. 2013, 13, 4827–4832.CrossRefGoogle Scholar
  14. [14]
    Pallecchi, E.; Ridene, M.; Kazazis, D.; Lafont, F.; Schopfer, F.; Poirier, W.; Goerbig, M. O.; Mailly, D.; Ouerghi, A. Insulating to relativistic quantum hall transition in disordered graphene. Sci. Rep. 2013, 3, 1791–1796.CrossRefGoogle Scholar
  15. [15]
    Martins, T.; Miwa, R.; da Silva, A.; Fazzio, A. Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 196803.CrossRefGoogle Scholar
  16. [16]
    Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 2009, 4726–4730.Google Scholar
  17. [17]
    Wang, Z.; Wei, M.; Jin, L.; Ning, Y.; Yu, L.; Fu, Q.; Bao, X. Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia. Nano Res. 2013, 6, 399–408.CrossRefGoogle Scholar
  18. [18]
    Wang, L.; Sofer, Z.; Šimek, P.; Tomandl, I.; Pumera, M. Boron-doped graphene: Scalable and tunable P-type carrier concentration doping. J. Phys. Chem. C 2013, 117, 23251–23257.CrossRefGoogle Scholar
  19. [19]
    Poh, H. L.; Šimek, P.; Sofer, Z.; Pumera, M. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 2013, 7, 5262–5272.CrossRefGoogle Scholar
  20. [20]
    Podila, R.; Chacón-Torres, J.; Spear, J. T.; Pichler, T.; Ayala, P.; Rao, A. M. Spectroscopic investigation of nitrogen doped graphene. Appl. Phys. Lett. 2012, 101, 123108.CrossRefGoogle Scholar
  21. [21]
    Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.CrossRefGoogle Scholar
  22. [22]
    Velez-Fort, E.; Mathieu, C.; Pallecchi, E.; Pigneur, M.; Silly, M. G.; Belkhou, R.; Marangolo, M.; Shukla, A.; Sirotti, F.; Ouerghi, A. Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: Evidence of low nitrogen doping and high charge transfer. ACS Nano 2012, 6, 10893–10900.Google Scholar
  23. [23]
    Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.CrossRefGoogle Scholar
  24. [24]
    Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Large scale synthesis of N-doped multi-layered graphene sheets by simple crc-discharge method. Carbon 2010, 48, 255–259.CrossRefGoogle Scholar
  25. [25]
    Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.CrossRefGoogle Scholar
  26. [26]
    Giovannetti, G.; Khomyakov, P.; Brocks, G.; Kelly, P.; van den Brink, J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 2007, 76, 073103.CrossRefGoogle Scholar
  27. [27]
    Decker, R.; Wang, Y.; Brar, V. W.; Regan, W.; Tsai, H. Z.; Wu, Q.; Gannett, W.; Zettl, A.; Crommie, M. F. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 2011, 11, 2291–2295.CrossRefGoogle Scholar
  28. [28]
    Tromp, R.; Hannon, J. Thermodynamics and kinetics of graphene growth on SiC(0001). Phys. Rev. Lett. 2009, 102, 106104.CrossRefGoogle Scholar
  29. [29]
    Bergeard, N.; Silly, M. G.; Krizmancic, D.; Chauvet, C.; Guzzo, M.; Ricaud, J. P.; Izquierdo, M.; Stebel, L.; Pittana, P.; Sergo, R., et al. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure. J. Synchrotron Radiat. 2011, 18, 245–250.CrossRefGoogle Scholar
  30. [30]
    Mathieu, C.; Lalmi, B.; Menteş, T. O.; Pallecchi, E.; Locatelli, A.; Latil, S.; Belkhou, R.; Ouerghi, A. Effect of oxygen adsorption on the local properties of epitaxial graphene on SiC (0001). Phys. Rev. B 2012, 86, 035435.CrossRefGoogle Scholar
  31. [31]
    Varchon, F.; Mallet, P.; Veuillen, J. Y.; Magaud, L. Ripples in epitaxial graphene on the Si-terminated SiC(0001) surface. Phys. Rev. B 2008, 77, 235412.CrossRefGoogle Scholar
  32. [32]
    Velez-Fort, E.; Silly, M. G.; Belkhou, R.; Shukla, A.; Sirotti, F.; Ouerghi, A. Edge state in epitaxial nanographene on 3C-SiC(100)/Si(100) substrate. Appl. Phys. Lett. 2013, 103, 083101.CrossRefGoogle Scholar
  33. [33]
    Ni, Z.; Chen, W.; Fan, X.; Kuo, J.; Yu, T.; Wee, A.; Shen, Z. Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B 2008, 77, 115416.CrossRefGoogle Scholar
  34. [34]
    Cancado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A. General equation for the determination of the crystallite size La of nanographite by raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106.CrossRefGoogle Scholar
  35. [35]
    Lv, R.; Li, Q.; Botello-Méndez, A. R.; Hayashi, T.; Wang, B.; Berkdemir, A.; Hao, Q.; Elías, A. L.; Cruz-Silva, R.; Gutiérrez, H. R., et al. Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2012, 2, 586.CrossRefGoogle Scholar
  36. [36]
    Oh, Y. S.; Cho, W. S.; Kim, C. S.; Lim, D. S.; Cheong, D. S. XPS investigation of Si3N4/SiC nanocomposites prepared using a commercial polymer. J. Am. Ceram. Soc. 1999, 82, 1076–1078.CrossRefGoogle Scholar
  37. [37]
    Yang, M.; Chai, J. W.; Wang, Y. Z.; Wang, S. J.; Feng, Y. P. Interfacial properties of silicon nitride grown on epitaxial graphene on 6H-SiC substrate. J. Phys. Chem. C 2012, 116, 22315–22318.CrossRefGoogle Scholar
  38. [38]
    Yang, M.; Zhang, C.; Wang, S.; Feng, Y.; Ariando. Graphene on B-Si3N4: An ideal system for graphene-based electronics. AIP Adv. 2011, 1, 032111.CrossRefGoogle Scholar
  39. [39]
    Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRefGoogle Scholar
  40. [40]
    Dai, J.; Yuan, J. Adsorption of molecular oxygen on doped graphene: Atomic, electronic, and magnetic properties. Phys. Rev. B 2010, 81, 165414.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Emilio Vélez-Fort
    • 1
    • 2
  • Emiliano Pallecchi
    • 1
  • Mathieu G. Silly
    • 3
  • Mounib Bahri
    • 1
  • Gilles Patriarche
    • 1
  • Abhay Shukla
    • 2
  • Fausto Sirotti
    • 3
  • Abdelkarim Ouerghi
    • 1
    Email author
  1. 1.CNRS-Laboratoire de Photonique et de Nanostructures (LPN)MarcoussisFrance
  2. 2.Université Pierre et Marie Curie (CNRS — IMPMC)ParisFrance
  3. 3.Synchrotron-SOLEIL, Saint-AubinGif sur Yvette CedexFrance

Personalised recommendations