Nano Research

, Volume 7, Issue 6, pp 824–834 | Cite as

Closely packed nanoparticle monolayer as a strain gauge fabricated by convective assembly at a confined angle

  • Chao Zhang
  • Juan Li
  • Shanshan Yang
  • Weihong Jiao
  • Shuang Xiao
  • Mingqing Zou
  • Songliu Yuan
  • Fei Xiao
  • Shuai WangEmail author
  • Lihua QianEmail author
Research Article


The reliability and sensitivity of a strain gauge made from a nanoparticle monolayer intrinsically depend on electron tunneling between the adjacent nanoparticles, so that creating nanoscale interstitials with uniform distribution and tuning the interparticle separation reversibly during cyclic mechanical stress are two vital issues for performance enhancement. In this work, one assembly technique is initialized to fabricate parallel nanoparticle strips by precisely tailoring the contact angle of a gold colloid on a substrate. The assembly of a nanoparticle monolayer with a close-packed pattern can be simultaneously switched on and off by independently varying the contact angle across a threshold value of 4.2°. This nanoparticle strip shows a reversible and reliable electrical response even if a mechanical strain as small as 0.027% is periodically supplied, implying well-controlled electron tunneling between the adjacent nanoparticles.


convective assembly strain gauge contact angle gold nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_443_MOESM1_ESM.pdf (785 kb)
Supplementary material, approximately 784 KB.

Supplementary material, approximately 1.74 MB.


  1. [1]
    Tanner, J. L.; Mousadakos, D.; Giannakopoulos, K.; Skotadis, E.; Tsoukalas, D. High strain sensitivity controlled by the surface density of platinum nanoparticles. Nanotechnology 2012, 23, 285501.CrossRefGoogle Scholar
  2. [2]
    Mamin, H. J.; Gurney, B. A.; Wilhoit, D. R.; Speriosu, V. S. High sensitivity spin-valve strain sensor. Appl. Phys. Lett 1998, 72, 3220–3222.CrossRefGoogle Scholar
  3. [3]
    Zhao, J.; He, C. L.; Yang, R.; Shi, Z. W.; Cheng, M.; Yang, W.; Xie, G. B.; Wang, D. M.; Shi, D. X.; Zhang, G. Y. Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl. Phys. Lett 2012, 101, 063112.CrossRefGoogle Scholar
  4. [4]
    Herrmann, J.; Muller, K.; Reda, T.; Baxter, G. R.; Raguse, B.; De Groot, G. J. J. B.; Chai, R.; Roberts, M.; Wieczorek, L. Nanoparticle films as sensitive strain gauges. Appl. Phys. Lett 2007, 91, 183105.CrossRefGoogle Scholar
  5. [5]
    Engel, J.; Chen, J.; Liu, C. Strain sensitivity enhancement of thin metal film strain gauges on polymer microscale structures. Appl. Phys. Lett 2006, 89, 221907.CrossRefGoogle Scholar
  6. [6]
    Segev-Bar, M.; Haick, H. Flexible sensors based on nanoparticles. ACS Nano 2013, 7, 8366–8378.CrossRefGoogle Scholar
  7. [7]
    Moreira, H.; Grisolia, J.; Sangeetha, N. M.; Decorde, N.; Farcau, C.; Viallet, B.; Chen, K.; Viau, G.; Ressier, L. Electron transport in gold colloidal nanoparticle-based strain gauges. Nanotechnology 2013, 24, 095701.CrossRefGoogle Scholar
  8. [8]
    Krasteva, N.; Besnard, I.; Guse, B.; Bauer, R. E.; Müllen, K.; Yasuda, A.; Vossmeyer, T. Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications. Nano Lett. 2002, 2, 551–555.CrossRefGoogle Scholar
  9. [9]
    Vossmeyer, T.; Stolte, C.; Ijeh, M.; Kornowski, A.; Weller, H. Networked gold-nanoparticle coatings on polyethylene: Charge transport and strain sensitivity. Adv. Funct. Mater. 2008, 18, 1611–1616.CrossRefGoogle Scholar
  10. [10]
    Hu, L. B.; Yuan, W.; Brochu, P.; Gruner, G.; Pei, Q. B. Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett 2009, 94, 161108.CrossRefGoogle Scholar
  11. [11]
    Murugaraj, P.; Mainwaring, D.; Khelil, N. A.; Peng, J. L.; Siegele, R.; Sawant, P. The improved electromechanical sensitivity of polymer thin films containing carbon clusters produced in situ by irradiation with metal ions. Carbon 2010, 48, 4230–4237.CrossRefGoogle Scholar
  12. [12]
    Pang, C.; Lee, G.-Y.; Kim, T.-i.; Kim, S. M.; Kim, H. N.; Ahn, S.-H.; Suh, K.-Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.CrossRefGoogle Scholar
  13. [13]
    Lim, M. A.; Lee, Y. W.; Han, S. W.; Park, I. Novel fabrication method of diverse one-dimensional Pt/ZnO hybrid nanostructures and its sensor application. Nanotechnology 2011, 22, 035601.CrossRefGoogle Scholar
  14. [14]
    Parthasarathy, R.; Lin, X. M.; Jaeger, H. M. Electronic transport in metal nanocrystal arrays: The effect of structural disorder on scaling behavior. Phys. Rev. Lett. 2001, 87, 186807.CrossRefGoogle Scholar
  15. [15]
    Sangeetha, N. M.; Decorde, N.; Viallet, B.; Viau, G.; Ressier, L. Nanoparticle-based strain gauges fabricated by convective self assembly: Strain sensitivity and hysteresis with respect to nanoparticle sizes. J. Phys. Chem. C 2013, 117, 1935–1940.CrossRefGoogle Scholar
  16. [16]
    Terrill, R. H.; Postlethwaite, T. A.; Chen, C.-h.; Poon, C.-D.; Terzis, A.; Chen, A.; Hutchison, J. E.; Clark, M. R.; Wignall, G. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc. 1995, 117, 12537–12548.CrossRefGoogle Scholar
  17. [17]
    Wuelfing, W. P.; Green, S. J.; Pietron, J. J.; Cliffel, D. E.; Murray, R. W. Electronic conductivity of solid-state, mixed-valent, monolayer-protected Au clusters. J. Am. Chem. Soc. 2000, 122, 11465–11472.CrossRefGoogle Scholar
  18. [18]
    Farcau, C.; Sangeetha, N. M.; Moreira, H.; Viallet, B.; Grisolia, J.; Ciuculescu-Pradines, D.; Ressier, L. High-sensitivity strain gauge based on a single wire of gold nanoparticles fabricated by stop-and-go convective self-assembly. ACS Nano 2011, 5, 7137–7143.CrossRefGoogle Scholar
  19. [19]
    Farcau, C.; Moreira, H.; Viallet, B.; Grisolia, J.; Ciuculescu-Pradines, D.; Amiens, C.; Ressier, L. Monolayered wires of gold colloidal nanoparticles for high-sensitivity strain sensing. J. Phys. Chem. C 2011, 115, 14494–14499.CrossRefGoogle Scholar
  20. [20]
    Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.CrossRefGoogle Scholar
  21. [21]
    Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 2010, 4, 3591–3605.CrossRefGoogle Scholar
  22. [22]
    Huang, J.; Kim, F.; Tao, A. R.; Connor, S.; Yang, P. Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat. Mater. 2005, 4, 896–900.CrossRefGoogle Scholar
  23. [23]
    Dimitrov, A. S.; Nagayama, K. Steady-state unidirectional convective assembling of fine particles into two-dimensional arrays. Chem. Phys. Lett. 1995, 243, 462–468.CrossRefGoogle Scholar
  24. [24]
    Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 2006, 5, 265–270.CrossRefGoogle Scholar
  25. [25]
    Han, W.; Lin, Z. Q. Learning from “Coffee Rings”: Ordered structures enabled by controlled evaporative self-assembly. Angew. Chem. Int. Ed. 2012, 51, 1534–1546.CrossRefGoogle Scholar
  26. [26]
    Wang, H.; Levin, C. S.; Halas, N. J. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J. Am. Chem. Soc. 2005, 127, 14992–14993.CrossRefGoogle Scholar
  27. [27]
    Dimitrov, A. S.; Nagayama, K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 1996, 12, 1303–1311.CrossRefGoogle Scholar
  28. [28]
    Prevo, B. G.; Velev, O. D. Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions. Langmuir 2004, 20, 2099–2107.CrossRefGoogle Scholar
  29. [29]
    Weldon, A. L.; Kumnorkaew, P.; Wang, B.; Cheng, X.; Gilchrist, J. F. Fabrication of macroporous polymeric membranes through binary convective deposition. ACS Appl. Mater. Interfaces 2012, 4, 4532–4540.CrossRefGoogle Scholar
  30. [30]
    Kuemin, C.; Stutz, R.; Spencer, N. D.; Wolf, H. Precise placement of gold nanorods by capillary assembly. Langmuir 2011, 27, 6305–6310.CrossRefGoogle Scholar
  31. [31]
    Farcau, C.; Moreira, H.; Viallet, B.; Grisolia, J.; Ressier, L. Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nonpatterned substrates. ACS Nano 2010, 4, 7275–7282.CrossRefGoogle Scholar
  32. [32]
    Jana, N. R.; Gearheart, L.; Murphy, C. J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. J. Chem. Mater. 2001, 13, 2313–2322.CrossRefGoogle Scholar
  33. [33]
    Qian, L. H.; Zhai, S. J.; Jiang, Y. T.; Das, B. Nanoscale convection assisted self-assembly of nanoparticle monolayer. J. Mater. Chem. 2012, 22, 4932–4937.CrossRefGoogle Scholar
  34. [34]
    Hempel, M.; Nezich, D.; Kong, J.; Hofmann, M. A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 2012, 12, 5714–5718.CrossRefGoogle Scholar
  35. [35]
    Gokhale, S. J.; Plawsky, J. L.; Wayner, P. C. Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops. Langmuir 2005, 21, 8188–8197.CrossRefGoogle Scholar
  36. [36]
    Cui, Y.; Björk, M. T.; Liddle, J. A.; Sönnichsen, C.; Boussert, B.; Alivisatos, A. P. Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett. 2004, 4, 1093–1098.CrossRefGoogle Scholar
  37. [37]
    Liao, J. H.; Li, X. X.; Wang, Y.; Zhang, C. Y.; Sun, J. L.; Duan, C.; Chen, Q.; Peng, L. M. Patterned close-packed nanoparticle arrays with controllable dimensions and precise locations. Small 2012, 8, 991–996.CrossRefGoogle Scholar
  38. [38]
    Fleutot, S.; Nealon, G. L.; Pauly, M.; Pichon, B. P.; Leuvrey, C.; Drillon, M.; Gallani, J. L.; Guillon, D.; Donnio, B.; Begin-Colin, S. Spacing-dependent dipolar interactions in dendronized magnetic iron oxide nanoparticle 2D arrays and powders. Nanoscale 2013, 5, 1507–1516.CrossRefGoogle Scholar
  39. [39]
    Qian, L. H.; Mookherjee, R. Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering. Nano Res. 2011, 4, 1117–1128.CrossRefGoogle Scholar
  40. [40]
    Lee, J. A.; Reibel, K.; Snyder, M. A.; Scriven, L. E.; Tsapatsis, M. Geometric model describing the banded morphology of particle films formed by convective assembly. ChemPhysChem 2009, 10, 2116–2122.CrossRefGoogle Scholar
  41. [41]
    Young, H. D.; Freedman, R. A. University Physics, 9th edition; Addison-Wesley Publishing Company: New York, 1996.Google Scholar
  42. [42]
    Kasap, S. O. Principles of Electronic Materials and Devices; Tata McGraw-Hill Education Private Limited, 2006.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chao Zhang
    • 1
  • Juan Li
    • 1
  • Shanshan Yang
    • 1
  • Weihong Jiao
    • 1
  • Shuang Xiao
    • 1
  • Mingqing Zou
    • 1
  • Songliu Yuan
    • 1
  • Fei Xiao
    • 2
  • Shuai Wang
    • 2
    Email author
  • Lihua Qian
    • 1
    Email author
  1. 1.School of PhysicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations