Advertisement

Nano Research

, Volume 7, Issue 5, pp 765–773 | Cite as

One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability

  • Yang Zhao
  • Dongliang Gao
  • Jiangfeng Ni
  • Lijun Gao
  • Juan Yang
  • Yan Li
Research Article

Abstract

Layered bismuth sulfide (Bi2S3) has emerged as an important type of Li-storage material due to its high theoretical capacity and intriguing reaction mechanism. The engineering and fabrication of Bi2S3 materials with large capacity and stable cyclability via a facile approach is essential, but still remains a great challenge. Herein, we employ a one-pot hydrothermal route to fabricate carbon-coated Bi2S3 nanomeshes (Bi2S3/C) as an efficient Li-storage material. The nanomeshes serve as a highly conducting and porous scaffold facilitating electron and ion transport, while the carbon coating layer provides flexible space for efficient reduction of mechanical strain upon electrochemical cycling. Consequently, the fabricated Bi2S3/C exhibits a high and stable capacity delivery in the 0.01–2.5 V region, notably outperforming previously reported Bi2S3 materials. It is able to discharge 472 mA·h·g−1 at 120 mA·g−1 over 50 full cycles, and to retain 301 mA·h·g−1 in the 40th cycle at 600 mA·g−1, demonstrating the potential of Bi2S3 as electrode materials for rechargeable batteries.

Keywords

bismuth sulfide carbon coating nanomesh lithium storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_437_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1.01 MB.

References

  1. [1]
    Yu, Y.; Jin, C. H.; Wang, R. H.; Chen, Q.; Peng, L. M. High-quality ultralong Bi2S3 nanowires: Structure, growth, and properties. J. Phys. Chem. B 2005, 109, 18772–18776.CrossRefGoogle Scholar
  2. [2]
    Peter, L. M.; Wijayantha, K. G. U.; Riley, D. J.; Waggett, J. P. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J. Phys. Chem. B 2003, 107, 8378–8381.CrossRefGoogle Scholar
  3. [3]
    Konstantatos, G.; Levina, L.; Tang, J.; Sargent, E. H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett. 2008, 8, 4002–4006.CrossRefGoogle Scholar
  4. [4]
    Wu, T.; Zhou, X.; Zhang, H.; Zhong, X. Bi2S3 Nanostructures: A new photocatalyst. Nano Res. 2010, 3, 379–386.CrossRefGoogle Scholar
  5. [5]
    Patrick, C. E.; Giustino, F. Structural and electronic properties of semiconductor-sensitized solar-cell interfaces. Adv. Funct. Mater. 2011, 21, 4663–4667.CrossRefGoogle Scholar
  6. [6]
    Rath, A. K.; Bernechea, M.; Martinez, L.; Konstantatos, G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 2011, 23, 3712–3717.CrossRefGoogle Scholar
  7. [7]
    Zhang, H.; Yang, L.; Liu, Z.; Ge, M.; Zhou, Z.; Chen, W.; Li, Q.; Liu, L. Facet-dependent activity of bismuth sulfide as low-cost counter-electrode materials for dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 18572–18577.CrossRefGoogle Scholar
  8. [8]
    Luo, S.; Chai, F.; Zhang, L.; Wang, C.; Li, L.; Liu, X.; Su, Z. Facile and fast synthesis of urchin-shaped Fe3O4@Bi2S core-shell hierarchical structures and their magnetically recyclable photocatalytic activity. J. Mater. Chem. 2012, 22, 4832–4836.CrossRefGoogle Scholar
  9. [9]
    Cademartiri, L.; Scotognella, F.; O’Brien, P. G.; Lotsch, B. V.; Thomson, J.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Cross-linking Bi2S3 ultrathin nanowires: A platform for nanostructure formation and biomolecule detection. Nano Lett. 2009, 9, 1482–1486.CrossRefGoogle Scholar
  10. [10]
    Wang, D. B.; Shao, M. W.; Yu, D. B.; Li, G. P.; Qian, Y. T. Polyol-mediated preparation of Bi2S3 nanorods. J. Cryst. Growth 2002, 243, 331–335.CrossRefGoogle Scholar
  11. [11]
    Liao, H.-C.; Wu, M.-C.; Jao, M.-H.; Chuang, C.-M.; Chen, Y.-F.; Su, W.-F. Synthesis, optical and photovoltaic properties of bismuth sulfide nanorods. CrystEngComm 2012, 14, 3645–3652.CrossRefGoogle Scholar
  12. [12]
    Wang, D.; Hao, C.; Zheng, W.; Ma, X.; Chu, D.; Peng, Q.; Li, Y. Bi2S3 nanotubes: Facile synthesis and growth mechanism. Nano Res. 2009, 2, 130–134.CrossRefGoogle Scholar
  13. [13]
    Tahir, A. A.; Ehsan, M. A.; Mazhar, M.; Wijayantha, K. G. U.; Zeller, M.; Hunter, A. D. Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. Chem. Mater. 2010, 22, 5084–5092.CrossRefGoogle Scholar
  14. [14]
    Cademartiri, L.; Malakooti, R.; O’Brien, P. G.; Migliori, A.; Petrov, S.; Kherani, N. P.; Ozin, G. A. Large-scale synthesis of ultrathin Bi2S3 necklace nanowires. Angew. Chem. Int. Ed. 2008, 47, 3814–3817.CrossRefGoogle Scholar
  15. [15]
    Cademartiri, L.; Guerin, G.; Bishop, K. J. M.; Winnik, M. A.; Ozin, G. A. Polymer-like conformation and growth kinetics of Bi2S3 nanowires. J. Am. Chem. Soc. 2012, 134, 9327–9334.CrossRefGoogle Scholar
  16. [16]
    Liu, Z. P.; Peng, S.; Xie, Q.; Hu, Z. K.; Yang, Y.; Zhang, S. Y.; Qian, Y. T. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. Adv. Mater. 2003, 15, 936–940.CrossRefGoogle Scholar
  17. [17]
    Shao, M. W.; Zhang, W.; Wu, Z. C.; Ni, Y. B. A template-free route to Bi2S3 nanoribbons. J. Cryst. Growth 2004, 265, 318–321.CrossRefGoogle Scholar
  18. [18]
    Song, C.; Wang, D.; Yang, T.; Hu, Z. Morphology-controlled synthesis of Bi2S3 microstructures. CrystEngComm 2011, 13, 3087–3092.CrossRefGoogle Scholar
  19. [19]
    Zhang, B.; Ye, X. C.; Hou, W. Y.; Zhao, Y.; Xie, Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J. Phys. Chem. B 2006, 110, 8978–8985.CrossRefGoogle Scholar
  20. [20]
    Li, L.; Sun, N.; Huang, Y.; Qin, Y.; Zhao, N.; Gao, J.; Li, M.; Zhou, H.; Qi, L. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 2008, 18, 1194–1201.CrossRefGoogle Scholar
  21. [21]
    Sigman, M. B.; Korgel, B. A. Solventless synthesis of Bi2S3 (bismuthinite) nanorods, nanowires, and nanofabric. Chem. Mater. 2005, 17, 1655–1660.CrossRefGoogle Scholar
  22. [22]
    Hu, P. F.; Cao, Y. L.; Lu, B. Flowerlike assemblies of Bi2S3 nanorods by solvothermal route and their electrochemical hydrogen storage performance. Mater. Lett. 2013, 106, 297–300.CrossRefGoogle Scholar
  23. [23]
    Jin, R. C.; Xu, Y. B.; Li, G. H.; Liu, J. S.; Chen, G. Hierarchical chlorophytum-like Bi2S3 architectures with high electrochemical performance. Int. J. Hydrogen Energy 2013, 38, 9137–9144.CrossRefGoogle Scholar
  24. [24]
    Zhou, H.; Xiong, S.; Wei, L.; Xi, B.; Zhu, Y.; Qian, Y. Acetylacetone-directed controllable synthesis of Bi2S3 nanostructures with tunable morphology. Cryst. Growth Des. 2009, 9, 3862–3867.CrossRefGoogle Scholar
  25. [25]
    Ma, J.; Liu, Z.; Lian, J.; Duan, X.; Kim, T.; Peng, P.; Liu, X.; Chen, Q.; Yao, G.; Zheng, W. Ionic liquids-assisted synthesis and electrochemical properties of Bi2S3 nanostructures. CrystEngComm 2011, 13, 3072–3079.CrossRefGoogle Scholar
  26. [26]
    Zhang, Z.; Zhou, C. K.; Lu, H.; Jia, M.; Lai, Y. Q.; Li, J. Facile synthesis of dandelion-like Bi2S3 microspheres and their electrochemical properties for lithium-ion batteries. Mater. Lett. 2013, 91, 100–102.CrossRefGoogle Scholar
  27. [27]
    Jung, H.; Park, C.-M.; Sohn, H.-J. Bismuth sulfide and its carbon nanocomposite for rechargeable lithium-ion batteries. Electrochim. Acta 2011, 56, 2135–2139.CrossRefGoogle Scholar
  28. [28]
    Lu, C.; Qi, L.; Yang, J.; Zhang, D.; Wu, N.; Ma, J. Simple template-free solution route for the controlled synthesis of Cu(OH)2. J. Phys. Chem. B 2004, 108, 17825–17831.CrossRefGoogle Scholar
  29. [29]
    Ni, J. F.; Morishita, M.; Kawabe, Y.; Watada, M.; Takeichi, N.; Sakai, T. Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. J. Power Sources 2010, 195, 2877–2882.CrossRefGoogle Scholar
  30. [30]
    Li, C. Q.; Sun, N. J.; Ni, J. F.; Wang, J. Y.; Chu, H. B.; Zhou, H. H.; Li, M. X.; Li, Y. Controllable preparation and properties of composite materials based on ceria nanoparticles and carbon nanotubes. J. Solid State Chem. 2008, 181, 2620–2625.CrossRefGoogle Scholar
  31. [31]
    Liu, J.; Ni, J.; Zhao, Y.; Wang, H.; Gao, L. Grapecluster-like Fe3O4@C/CNT nanostructures with stable Li-storage capability. J. Mater. Chem. A 2013, 1, 12879–12884.CrossRefGoogle Scholar
  32. [32]
    Koh, Y. W.; Lai, C. S.; Du, A. Y.; Tiekink, E. R. T.; Loh, K. P. Growth of bismuth sulfide nanowire using bismuth trisxanthate single source precursors. Chem. Mater. 2003, 15, 4544–4554.CrossRefGoogle Scholar
  33. [33]
    Belharouak, I.; Johnson, C.; Amine, K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem. Commun. 2005, 7, 983–988.CrossRefGoogle Scholar
  34. [34]
    Ni, J.; Wang, G.; Yang, J.; Gao, D.; Chen, J.; Gao, L.; Li, Y. Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability. J. Power Sources 2014, 247, 90–94.CrossRefGoogle Scholar
  35. [35]
    Ma, J.; Yang, J.; Jiao, L.; Wang, T.; Lian, J.; Duan, X.; Zheng, W. Bi2S3 nanomaterials: Morphology manipulation and related properties. Dalton Trans. 2011, 40, 10100–10108.CrossRefGoogle Scholar
  36. [36]
    Wang, G. B.; Ni, J. F.; Wang, H. B.; Gao, L. J. High-performance CNT-wired MoO3 nanobelts for Li-storage application. J. Mater. Chem. A 2013, 1, 4112–4118.CrossRefGoogle Scholar
  37. [37]
    Wang, Y. G.; Li, H. Q.; He, P.; Hosono, E.; Zhou, H. S. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294–1305.CrossRefGoogle Scholar
  38. [38]
    Cheng, Y. W.; Lu, S. T.; Zhang, H. B.; Varanasi, C. V.; Liu, J. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 2012, 12, 4206–4211.CrossRefGoogle Scholar
  39. [39]
    Zhao, L. W.; Ni, J. F.; Wang, H. B.; Gao, L. J. Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries. RSC Adv. 2013, 3, 6650–6655.CrossRefGoogle Scholar
  40. [40]
    Chu, H. B.; Wei, L.; Cui, R. L.; Wang, J. Y.; Li, Y. Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications. Coord. Chem. Rev. 2010, 254, 1117–1134.CrossRefGoogle Scholar
  41. [41]
    Ni, J. F.; Han, Y. H.; Gao, L. J.; Lu, L. One-pot synthesis of CNT-wired LiCo0.5Mn0.5PO4 nanocomposites. Electrochem. Commun. 2013, 31, 84–87.CrossRefGoogle Scholar
  42. [42]
    Ni, J. F.; Wang, H. B.; Gao, L. J.; Lu, L. A high-performance LiCoPO4/C core/shell composite for Li-ion batteries. Electrochim. Acta 2012, 70, 349–354.CrossRefGoogle Scholar
  43. [43]
    Ni, J. F.; Gao, L. J.; Lu, L. Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques. J. Power Sources 2013, 221, 35–41.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Energy & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouChina
  2. 2.Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, and State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsPeking UniversityBeijingChina

Personalised recommendations