Nano Research

, Volume 7, Issue 4, pp 561–571

The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2

Research Article

Abstract

We quantitatively study the Raman and photoluminescence (PL) emission from single-layer molybdenum disulfide (MoS2) on dielectric (SiO2, hexagonal boron nitride, mica and the polymeric dielectric Gel-Film®) and conducting substrates (Au and few-layer graphene). We find that the substrate can affect the Raman and PL emission in a twofold manner. First, the absorption and emission intensities are strongly modulated by the constructive/destructive interference within the different substrates. Second, the position of the A1g Raman mode peak and the spectral weight between neutral and charged excitons in the PL spectra are modified by the substrate. We attribute this effect to substrate-induced changes in the doping level and in the decay rates of the excitonic transitions. Our results provide a method to quantitatively study the Raman and PL emission from MoS2-based vertical heterostructures and represent the first step in ad hoc tuning the PL emission of 1L MoS2 by selecting the proper substrate.

Keywords

molybdenum disulfide van der Waals heterostructures Raman microscopy photoluminescence enhancement photoluminescence quenching substrate effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_424_MOESM1_ESM.pdf (2.8 mb)
Supplementary material, approximately 2.83 MB.

References

  1. [1]
    Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 2007, 101, 014507.CrossRefGoogle Scholar
  2. [2]
    Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.CrossRefGoogle Scholar
  3. [3]
    Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358–363.CrossRefGoogle Scholar
  4. [4]
    Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775.CrossRefGoogle Scholar
  5. [5]
    Cooper, R. C.; Lee, C.; Marianetti, C. A.; Wei, X. D.; Hone, J.; Kysar, J. W. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 2013, 87, 035423.CrossRefGoogle Scholar
  6. [6]
    Castellanos-Gomez, A.; van Leeuwen, R.; Buscema, M.; van der Zant, H. S.; Steele, G. A.; Venstra, W. J. Single-layer MoS2 mechanical resonators. Adv. Mater. 2013, 25, 6719–6723.CrossRefGoogle Scholar
  7. [7]
    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRefGoogle Scholar
  8. [8]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  9. [9]
    Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.CrossRefGoogle Scholar
  10. [10]
    Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695–3700.CrossRefGoogle Scholar
  11. [11]
    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.CrossRefGoogle Scholar
  12. [12]
    Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.CrossRefGoogle Scholar
  13. [13]
    Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.CrossRefGoogle Scholar
  14. [14]
    Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-vi dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.CrossRefGoogle Scholar
  15. [15]
    Kioseoglou, G.; Hanbicki, A. T.; Currie, M.; Friedman, A. L.; Gunlycke, D.; Jonker, B. T. Valley polarization and intervalley scattering in monolayer MoS2. Appl. Phys. Lett. 2012, 101, 221907.CrossRefGoogle Scholar
  16. [16]
    Sercombe, D.; Schwarz, S.; Pozo-Zamudio, O. D.; Liu, F.; Robinson, B. J.; Chekhovich, E. A.; Tartakovskii, I. I.; Kolosov, O.; Tartakovskii, A. I. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 2013, 3, 3489.CrossRefGoogle Scholar
  17. [17]
    Mao, N. N.; Chen, Y. F.; Liu, D. M.; Zhang, J.; Xie, L. M. Solvatochromic effect on the photoluminescence of MoS2 monolayers. Small 2013, 9, 1312–1315.CrossRefGoogle Scholar
  18. [18]
    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim., P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.CrossRefGoogle Scholar
  19. [19]
    Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.CrossRefGoogle Scholar
  20. [20]
    Geim, A. K.; Grigorieva, I. V. Van der waals heterostructures. Nature 2013, 499, 419–425.CrossRefGoogle Scholar
  21. [21]
    Lu, X. M.; Xia, Y. N. Electronic materials: Buckling down for flexible electronics. Nat. Nanotechnol. 2006, 1, 163–164.CrossRefGoogle Scholar
  22. [22]
    Castellanos-Gomez, A.; Wojtaszek, M.; Tombros, N.; Agrait, N.; van Wees, B. J.; Rubio-Bollinger, G. Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small 2011, 7, 2491–2497.Google Scholar
  23. [23]
    Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; Zant, H. S. J. v. d.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. arXiv:1311.4829 2013.Google Scholar
  24. [24]
    Castellanos-Gomez, A.; Agrait, N.; Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.CrossRefGoogle Scholar
  25. [25]
    Late, D. J.; Liu, B.; Matte, H. S. S. R.; Rao, C. N. R.; Dravid, V. P. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv. Funct. Mater. 2012, 22, 1894–1905.CrossRefGoogle Scholar
  26. [26]
    Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q.; Zhang, H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 2013, 7, 10344–10353.CrossRefGoogle Scholar
  27. [27]
    Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187–3192.CrossRefGoogle Scholar
  28. [28]
    Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.CrossRefGoogle Scholar
  29. [29]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  30. [30]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  31. [31]
    van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.CrossRefGoogle Scholar
  32. [32]
    Ji, Q. Q.; Zhang, Y. F.; Gao, T.; Zhang, Y.; Ma, D. L.; Liu, M. X.; Chen, Y. B.; Qiao, X. F.; Tan, P. H.; Kan, M. et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013, 13, 3870–3877.CrossRefGoogle Scholar
  33. [33]
    Li, S. L.; Miyazaki, H.; Song, H.; Kuramochi, H.; Nakaharai, S.; Tsukagoshi, K. Quantitative raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano 2012, 6, 7381–7388.CrossRefGoogle Scholar
  34. [34]
    Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K. S.; Ferrari, A. C. Rayleigh imaging of graphene and graphene layers. Nano Lett. 2007, 7, 2711–2717.CrossRefGoogle Scholar
  35. [35]
    Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307.CrossRefGoogle Scholar
  36. [36]
    Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.CrossRefGoogle Scholar
  37. [37]
    Hui, Y. Y.; Liu, X. F.; Jie, W. J.; Chan, N. Y.; Hao, J. H.; Hsu, Y. T.; Li, L. J.; Guo, W. L.; Lau, S. P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 2013, 7, 7126–7131.CrossRefGoogle Scholar
  38. [38]
    McKeown, D. A.; Bell, M. I.; Etz, E. S. Vibrational analysis of the dioctahedral mica: 2m∼ 1 muscovite. Am. Mineral. 1999, 84, 1041–1048.Google Scholar
  39. [39]
    Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707–7712.CrossRefGoogle Scholar
  40. [40]
    Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.CrossRefGoogle Scholar
  41. [41]
    Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechol. 2013, 8, 634–638.CrossRefGoogle Scholar
  42. [42]
    Limited, R. T. In Polymers in rheology conference: A two-day conference, Shrewsbury, UK, 26th & 27th April, 2001.Google Scholar
  43. [43]
    Lefebvre, J.; Homma, Y.; Finnie, P. Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. Phys. Rev. Lett. 2003, 90, 217401.CrossRefGoogle Scholar
  44. [44]
    Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube optoelectronics. In Carbon nanotubes. Springer: Berlin Heidelberg, 2008; pp 423–454.Google Scholar
  45. [45]
    Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photon. 2008, 2, 341–350.CrossRefGoogle Scholar
  46. [46]
    Kim, J.; Cote, L. J.; Kim, F.; Huang, J. X. Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 2010, 132, 260–267.CrossRefGoogle Scholar
  47. [47]
    Gaudreau, L.; Tielrooij, K. J.; Prawiroatmodjo, G. E. D. K.; Osmond, J.; de Abajo, F. J. G.; Koppens, F. H. L. Universal distance-scaling of nonradiative energy transfer to graphene. Nano Lett. 2013, 13, 2030–2035.CrossRefGoogle Scholar
  48. [48]
    Swathi, R. S.; Sebastian, K. L. Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence. J. Chem. Phys. 2009, 130, 086101.CrossRefGoogle Scholar
  49. [49]
    Adarsh, S.; Klaus, K.; Kannan, B. Marker-free on-the-fly fabrication of graphene devices based on fluorescence quenching. Nanotechnology 2010, 21, 015303.CrossRefGoogle Scholar
  50. [50]
    Chen, Z. Y.; Berciaud, S.; Nuckolls, C.; Heinz, T. F.; Brus, L. E. Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 2010, 4, 2964–2968.CrossRefGoogle Scholar
  51. [51]
    Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.CrossRefGoogle Scholar
  52. [52]
    Ron, A.; Yoon, H. W.; Sturge, M. D.; Manassen, A.; Cohen, E.; Pfeiffer, L. N. Thermodynamics of free trions in mixed type GaAs/AlAs quantum wells. Solid State Commun. 1996, 97, 741–745.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations