Nano Research

, Volume 7, Issue 4, pp 511–517 | Cite as

Chemical vapor deposition growth of monolayer MoSe2 nanosheets

  • Jonathan C. Shaw
  • Hailong Zhou
  • Yu Chen
  • Nathan O. Weiss
  • Yuan Liu
  • Yu Huang
  • Xiangfeng Duan
Research Article

Abstract

The synthesis of two-dimensional (2D) layered materials with controllable thickness is of considerable interest for diverse applications. Here we report the first chemical vapor deposition growth of single- and few-layer MoSe2 nanosheets. By using Se and MoO3 as the chemical vapor supply, we demonstrate that highly crystalline MoSe2 can be directly grown on the 300 nm SiO2/Si substrates to form optically distinguishable single- and multi-layer nanosheets, typically in triangular shaped domains with edge lengths around 30 μm, which can merge into continuous thin films upon further growth. Micro-Raman spectroscopy and imaging was used to probe the thickness-dependent vibrational properties. Photoluminescence spectroscopy demonstrates that MoSe2 monolayers exhibit strong near band edge emission at 1.55 eV, while bilayers or multi-layers exhibit much weaker emission, indicating of the transition to a direct band gap semiconductor as the thickness is reduced to a monolayer.

Keywords

chemical vapor deposition molybdenum diselenide two-dimensional materials transition metal dichalcogenide layered materials semiconductor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_417_MOESM1_ESM.pdf (693 kb)
Supplementary material, approximately 692 KB.

References

  1. [1]
    Frindt, R. F.; Yoffe, A. D. Physical properties of layer structures-Optical properties and photoconductivity of thin crystals of molybdenum disulfide. Proc. R. Soc. London A 1969, 273, 69–83.CrossRefGoogle Scholar
  2. [2]
    Margulis, L.; Salitra, G.; Talianker, M.; Tenne, R.; Talianker. M. Nested fullerene-like structures. Nature 1993, 365, 113–114.CrossRefGoogle Scholar
  3. [3]
    Prins, R.; De Beer, V. H. J.; Somorjai, G. A. Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysis. Catal. Rev. Sci. Eng. 1989, 31, 1–41.CrossRefGoogle Scholar
  4. [4]
    Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A Molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.CrossRefGoogle Scholar
  5. [5]
    Kim, Y.; Huang, J.-L.; Lieber, C. M. Characterization of nanometer scale wear and oxidation of transition-metal dichalcogenide lubrications by atomic force microscopy. Appl. Phys. Lett. 1991, 59, 3404–3406.CrossRefGoogle Scholar
  6. [6]
    Li, Y.; Wang, H. L.; Xie, L. M.; Liang, Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.CrossRefGoogle Scholar
  7. [7]
    Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.CrossRefGoogle Scholar
  8. [8]
    Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electornic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.CrossRefGoogle Scholar
  9. [9]
    Coehoorn, R.; Haas, C.; Dijkstra, J.; Flipse, C. J. F.; de Groot, R. A.; Wold. A. Electronic structure of MoSe2, MoS2 and WSe2. I. Band structure calculations and photoelectron spectroscopy. Phys. Rev. B 1987, 35, 6195–6202.CrossRefGoogle Scholar
  10. [10]
    Liu, L.; Kumar, S. B.; Ouyang, Y.; Jing. G. Performance limits of monolayer transition metal dichalcogenide transistiors. IEEE Trans. Electron. Dev. 2011, 58, 3042–3047.CrossRefGoogle Scholar
  11. [11]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  12. [12]
    Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner M. Electroluminescence in single-layer MoS2. Nano Lett. 2013, 13, 1416–1421.Google Scholar
  13. [13]
    Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.CrossRefGoogle Scholar
  14. [14]
    Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.CrossRefGoogle Scholar
  15. [15]
    He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.CrossRefGoogle Scholar
  16. [16]
    Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63–67.CrossRefGoogle Scholar
  17. [17]
    Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.CrossRefGoogle Scholar
  18. [18]
    Wu, J.; Li, H.; Yin, Z. Y.; Li, H.; Liu, J.; Cao, X.; Zhang, Q.; Zhang, H. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small 2013, 9, 3314–3319.Google Scholar
  19. [19]
    Lee, Y.-H.; Zhang, X.-Q.; Zhang, W. J.; Chang, M.-T. M.; Lin, C.-T.; Chang, K. D.; Yu, Y.-C.; Wang, J. T.-W.; Chang, C.-S.; Li, L.-J.; et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.CrossRefGoogle Scholar
  20. [20]
    Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large area vapor phase growth and characterization of MoS2 atomic layers on SiO2 substrate. Small 2012, 8, 966–971.CrossRefGoogle Scholar
  21. [21]
    Liu, K.-K.; Zhang, W. J.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y. M.; Zhang, H.; et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.CrossRefGoogle Scholar
  22. [22]
    Lee, Y.-H.; Yu, L.; Wang, H.; Fang W. J.; Ling, X.; Shi, Y. M.; Lin, C.-T.; Huang, J.-K.; Chang, M.-T.; Chang, C.-S.; et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 2013, 13, 1852–1857.Google Scholar
  23. [23]
    Van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G.-H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.CrossRefGoogle Scholar
  24. [24]
    Najmaei, S.; Liu, Z.; Zhou, W.; Zou X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.CrossRefGoogle Scholar
  25. [25]
    Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 449, 419–425.CrossRefGoogle Scholar
  26. [26]
    Pouzet, J.; Bernede J. C. MoSe2 thin-films synthesized by solid-state reactions between Mo and Se thin-films. Revue Phys. Appl. 1990, 25, 807–815.CrossRefGoogle Scholar
  27. [27]
    Peng, Y.; Meng, Z. Y.; Zhong, C.; Lu, J.; Yu, W. C.; Jia, Y. B.; Qian, Y. T. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem. Lett. 2001, 30, 772–773.CrossRefGoogle Scholar
  28. [28]
    Matte, H. S. S. R.; Plowman, B.; Datta, R.; Rao, C. N. R. Graphene analogues of layered metal selenides. Dalton Trans. 2011, 40, 10322–10325.CrossRefGoogle Scholar
  29. [29]
    Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13 1341–1347.CrossRefGoogle Scholar
  30. [30]
    Jäger-Waldau, A.; Lux-Steiner, M.; Jäger-Waldu, R.; Burkhardt, R.; Bucher, E. Composition and morphology of MoSe2 thin films. Thin Solid Films 1990, 189, 339–345.CrossRefGoogle Scholar
  31. [31]
    Boscher, N. D.; Carmalt, C. J.; Palgrave, R. G.; Gil-Tomas, J. J.; Parkin, I. P. Atmospheric pressure CVD of molybdenum diselenide films on glass. Chem. Vapor. Depos. 2006, 12, 692–698.CrossRefGoogle Scholar
  32. [32]
    Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.CrossRefGoogle Scholar
  33. [33]
    Larentis, S.; Fallahazad, B.; Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 2012, 101, 223104.CrossRefGoogle Scholar
  34. [34]
    Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.CrossRefGoogle Scholar
  35. [35]
    Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952–958.CrossRefGoogle Scholar
  36. [36]
    Yu, W. J.; Li, Z.; Zhou, H.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2012, 12, 246–252.CrossRefGoogle Scholar
  37. [37]
    Zhou, H.; Yu, W. J.; Liu, L.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013, 4, 2096.Google Scholar
  38. [38]
    Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816–2819.CrossRefGoogle Scholar
  39. [39]
    Peng, H.; Dang, W.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z.-X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.CrossRefGoogle Scholar
  40. [40]
    Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B.; et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.CrossRefGoogle Scholar
  41. [41]
    Huang, J. K.; Pu, J.; Chuu, C. P.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Chou M. Y. Large-area and highly crystalline WSe2 monolayers: From synthesis to device applications. Preprint at http://arxiv.org/abs/1304.7365.
  42. [42]
    Li, X. L.; Li, Y. D. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem. Eur. J. 2003, 9, 2726–2731.CrossRefGoogle Scholar
  43. [43]
    Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zhan, D. R.; et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 4, 4908–4916.CrossRefGoogle Scholar
  44. [44]
    James, P. B.; Lavik, M. T. The crystal structure of MoSe2. Acta. Cryst. 1963, 16, 1183.CrossRefGoogle Scholar
  45. [45]
    Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008, 10, 093026.CrossRefGoogle Scholar
  46. [46]
    Zhou, H. Q.; Yu, F.; Liu, Y. Y.; Zou, X. L.; Cong, C. X.; Qiu, C. Y.; Yu, T.; Yan, Z.; Shen, X. N.; Sun, L. F.; et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 2013, 6, 703–711.CrossRefGoogle Scholar
  47. [47]
    Liang, T.; Sawyer, W. G.; Perry, S. S.; Sinnott, S. B.; Phillpot, S. R. First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys. Rev. B 2008, 77, 104105.CrossRefGoogle Scholar
  48. [48]
    Horzum, S.; Sahin, H.; Cahangirov, S.; Cudazzo, P.; Rubio, A.; Serin, T.; Peeters, F. M. Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2. Phys. Rev. B 2013, 87, 125415.CrossRefGoogle Scholar
  49. [49]
    Lee, C. G.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. M. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jonathan C. Shaw
    • 1
  • Hailong Zhou
    • 1
  • Yu Chen
    • 2
  • Nathan O. Weiss
    • 2
  • Yuan Liu
    • 2
  • Yu Huang
    • 2
    • 3
  • Xiangfeng Duan
    • 1
    • 3
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.California NanoSystems InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations