Nano Research

, Volume 7, Issue 4, pp 502–510 | Cite as

Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries

  • Huilong Fei
  • Zhiwei Peng
  • Lei Li
  • Yang Yang
  • Wei Lu
  • Errol L. G. Samuel
  • Xiujun Fan
  • James M. TourEmail author
Research Article


We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe2O3 nanoparticles dispersed on graphene sheets (Fe2O3@C@G). Graphene sheets with high surface area and aspect ratio are chosen as space restrictor to prevent the sintering and aggregation of nanoparticles during high temperature treatments (800 °C). In the resulting nanocomposite, each individual Fe2O3 nanoparticle (5 to 20 nm in diameter) is uniformly coated with a continuous and thin (two to five layers) graphitic carbon shell. Further, the core-shell nanoparticles are evenly distributed on graphene sheets. When used as anode materials for lithium ion batteries, the conductive-additive-free Fe2O3@C@G electrode shows outstanding Li+ storage properties with large reversible specific capacity (864 mAh/g after 100 cycles), excellent cyclic stability (120% retention after 100 cycles at 100 mA/g), high Coulombic efficiency (∼99%), and good rate capability.


Fe2O3 nanoparticles carbon coating graphene chemical vapor deposition (CVD) anode lithium ion batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_416_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.05 MB.


  1. [1]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  2. [2]
    Scrosati, B. Challenge of portable power. Nature 1995, 373, 557–558.CrossRefGoogle Scholar
  3. [3]
    Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Subba Rao, G. V.; Chowdari, B. V. R. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792–2799.CrossRefGoogle Scholar
  4. [4]
    Jia, X.; Chen, Z.; Cui, X.; Peng, Y.; Wang, X.; Wang, G.; Wei, F.; Lu, Y. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. ACS Nano 2012, 6, 9911–9919.CrossRefGoogle Scholar
  5. [5]
    Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRefGoogle Scholar
  6. [6]
    Peng, C.; Chen, B.; Qin, Y.; Yang, S.; Li, C.; Zuo, Y.; Liu, S.; Yang, J. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.CrossRefGoogle Scholar
  7. [7]
    Yu, A.; Park, H. W.; Davies, A.; Higgins, D. C.; Chen, Z.; Xiao, X. Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J. Phys. Chem. Lett. 2011, 2, 1855–1860.CrossRefGoogle Scholar
  8. [8]
    Needham, S. A.; Wang, G. X.; Liu, H. K. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J. Power Sources 2006, 159, 254–257.CrossRefGoogle Scholar
  9. [9]
    Zhu, X.; Zhu, Y.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 2011, 5, 3333–3338.CrossRefGoogle Scholar
  10. [10]
    Xu, X.; Cao, R.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12, 4988–4991.CrossRefGoogle Scholar
  11. [11]
    Han, F.; Li, D.; Li, W.; Lei, C.; Sun, Q.; Lu, A. Nanoengineered polypyrrole-coated Fe2O3@C multifunctional composites with an improved cycle stability as lithium-ion anodes. Adv. Funct. Mater. 2012, 23, 1692–1697.CrossRefGoogle Scholar
  12. [12]
    Yuan, S. M.; Li, J. X.; Yang, L. T.; Su, L. W.; Liu, L.; Zhou, Z. Preparation and lithium storage performances of mesoporous Fe3O4@C microcapsules. ACS Appl. Mater. Inter. 2011, 3, 705–709.CrossRefGoogle Scholar
  13. [13]
    Yu, W.; Hou, P.; Zhang, L.; Li, F.; Liu, C.; Cheng, H. Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. Chem. Commun. 2010, 46, 8576–8578.CrossRefGoogle Scholar
  14. [14]
    Zhang, W.; Wu, X.; Hu, J.; Guo, Y.; Wan, L. Carbon coated Fe3O4 nanospindles as a superior anode material for lithiumion batteries. Adv. Funct. Mater. 2008, 18, 3941–3946.CrossRefGoogle Scholar
  15. [15]
    Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  16. [16]
    Poizot, P.; Laruelle, S.; Grugeon, S.; Tarascon, J. M. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J. Electrochem. Soc. 2002, 149, A1212–1217.CrossRefGoogle Scholar
  17. [17]
    Arora, P.; White, R. E.; Doyle, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 1998, 145, 3647–3667.CrossRefGoogle Scholar
  18. [18]
    Inagaki, M. Carbon coating for enhancing the functionalities of materials. Carbon 2012, 50, 3247–3266.CrossRefGoogle Scholar
  19. [19]
    Yang, S.; Sun, Y.; Chen, L.; Hernandez, Y.; Feng, X.; Müllen, K. Porous iron oxide ribbons grown on graphene for high-performance lithium storage. Sci. Rep. 2012, 2, 427–433.Google Scholar
  20. [20]
    Li, H.; Zhou, H. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.CrossRefGoogle Scholar
  21. [21]
    Li, B.; Cao, H.; Shao, J.; Qu, M. Enhanced anode performances of the Fe3O4-carbon-rGO three dimensional composite in lithium ion batteries. Chem. Commun. 2011, 47, 10374–10376.CrossRefGoogle Scholar
  22. [22]
    Liu, H.; Wang, G.; Wang, J.; Wexler, D. Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries. Electrochem. Commun. 2008, 10, 1879–1882.CrossRefGoogle Scholar
  23. [23]
    Muraliganth, T.; Vadivel Murugan, A.; Manthiram, A. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem. Commun. 2009, 7360–7362.Google Scholar
  24. [24]
    Lu, A. H.; Li, W. C.; Salabas, E. L.; Spliethoff, B.; Schüth, F. Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon. Chem. Mater. 2006, 18, 2086–2094.CrossRefGoogle Scholar
  25. [25]
    Wilcox, J. D.; Doeff, M. M.; Marcinek, M.; Kostecki, R. Factors influencing the quality of carbon coatings on LiFePO4. J. Electrochem. Soc. 2007, 154, A389–395.CrossRefGoogle Scholar
  26. [26]
    L’vov, B. V. Mechanism of carbothermal reduction of iron, cobalt, nickel and copper oxides. Thermochim. Acta 2000, 360, 109–120.CrossRefGoogle Scholar
  27. [27]
    Li, Z.; Sun, Q.; Gao, M. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: Mechanism leading to Fe3O4. Angew. Chem. Int. Edit. 2005, 44, 123–126.CrossRefGoogle Scholar
  28. [28]
    Martha, S. K.; Grinblat, J.; Haik, O.; Zinigrad, E.; Drezen, T.; Miners, J. H.; Exnar, I.; Kay, A.; Markovsky, B.; Aurbach, D. LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries. Angew. Chem. Int. Edit. 2009, 48, 8559–8563.CrossRefGoogle Scholar
  29. [29]
    Zhao, L.; Hu, Y. S.; Li, H.; Wang, Z.; Chen, L. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385–1388.CrossRefGoogle Scholar
  30. [30]
    Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160–1165.CrossRefGoogle Scholar
  31. [31]
    Lee, K. T.; Jung, Y. S.; Oh, S. M. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 2003, 125, 5652–5653.CrossRefGoogle Scholar
  32. [32]
    Zhou, J.; Song, H.; Chen, X.; Zhi, L.; Yang, S.; Huo, J.; Yang, W. Carbon-encapsulated metal oxide hollow nanoparticles and metal oxide hollow nanoparticles: A general synthesis strategy and its application to lithium-ion batteries. Chem. Mater. 2009, 21, 2935–2940.CrossRefGoogle Scholar
  33. [33]
    Yu, W. J.; Hou, P. X.; Li, F.; Liu, C. Improved electrochemical performance of Fe2O3 nanoparticles confined in carbon nanotubes. J. Mater. Chem. 2012, 22, 13756–13763.CrossRefGoogle Scholar
  34. [34]
    Fujii, T.; de Groot, F. M. F.; Sawatzky, G. A.; Voogt, F. C.; Hibma, T.; Okada, K. In situ XPS analysis of various iron oxide films gown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 1999, 59, 3195–3202.CrossRefGoogle Scholar
  35. [35]
    Zhou, G.; Wang, D. W.; Li, F.; Zhang, L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.CrossRefGoogle Scholar
  36. [36]
    Zhou, W.; Lin, L.; Wang, W.; Zhang, L.; Wu, Q.; Li, J.; Guo, L. Hierarchial mesoporous hematite with “electron-transport channels” and its improved performances in photocatalysis and lithium ion batteries. J. Phys. Chem. C 2011, 115, 7126–7133.CrossRefGoogle Scholar
  37. [37]
    Sun, B.; Horvat, J.; Kim, H. S.; Kim, W. S.; Ahn, J.; Wang, G. Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J. Phys. Chem. C 2010, 114, 18753–18761.CrossRefGoogle Scholar
  38. [38]
    Ma, Y.; Ji, G.; Lee, J. Y. Synthesis of mixed-conducting carbon coated porous γ-Fe2O3 microparticles and their properties for reversible lithiumi storage. J. Mater. Chem. 2011, 21, 13009–13014.CrossRefGoogle Scholar
  39. [39]
    Chou, S. L.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Zhong, C.; Liu, H. K.; Dou, S. X. High-surface-area γ-Fe2O3/carbon nanocomposite: One-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J. Mater. Chem. 2010, 20, 2092–2098.CrossRefGoogle Scholar
  40. [40]
    Wang, Z.; Luan, D.; Madhavi, S.; Li, C. M.; Lou, X. W. γ-Fe2O3 nanotubes with superior lithium storage capability. Chem. Commun. 2011, 47, 8061–8063.CrossRefGoogle Scholar
  41. [41]
    Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z.; Lou, X. W. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 2011, 133, 17146–17148.CrossRefGoogle Scholar
  42. [42]
    Wang, Z.; Luan, D.; Madhavi, S.; Hu, Y.; Lou, X. W. Assembling carbon-coated γ-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energ. Environ. Sci. 2012, 5, 5252–5256.CrossRefGoogle Scholar
  43. [43]
    Kang, E.; Jung, Y. S.; Cavanagh, A. S.; Kim, G. H.; George, S. M.; Dillon, A. C.; Kim, J. K.; Lee, J. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2011, 21, 2430–2438.CrossRefGoogle Scholar
  44. [44]
    Zhou, G.; Wang, D. W.; Hou, P. X.; Li, W.; Li, N.; Liu, C.; Li, F.; Cheng, H. M. A nanosized Fe2O3 decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries. J. Mater. Chem. 2012, 22, 17942–17946.CrossRefGoogle Scholar
  45. [45]
    Han, F.; Li, W. C.; Li, M. R.; Lu, A. H. Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. J. Mater. Chem. 2012, 22, 9645–9651.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Huilong Fei
    • 1
  • Zhiwei Peng
    • 1
  • Lei Li
    • 1
  • Yang Yang
    • 1
    • 2
  • Wei Lu
    • 1
  • Errol L. G. Samuel
    • 1
  • Xiujun Fan
    • 1
  • James M. Tour
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of ChemistryRice UniversityHoustonUSA
  2. 2.Richard E. Smalley Institute for Nanoscale Science and TechnologyRice UniversityHoustonUSA
  3. 3.Department of Materials Science and NanoEngineeringRice UniversityHoustonUSA

Personalised recommendations