Nano Research

, Volume 7, Issue 3, pp 390–398 | Cite as

Functionalized, carbon nanotube material for the catalytic degradation of organophosphate nerve agents

  • Mark M. Bailey
  • John M. Heddleston
  • Jeffrey Davis
  • Jessica L. Staymates
  • Angela R. Hight Walker
Research Article

Abstract

Recent world events have emphasized the need to develop innovative, functional materials that will safely neutralize chemical warfare (CW) agents in situ to protect military personnel and civilians from dermal exposure. Here, we demonstrate the efficacy of a novel, proof-of-concept design for a Cu-containing catalyst, chemically bonded to a single-wall carbon nanotube (SWCNT) structural support, to effectively degrade an organophosphate simulant. SWCNTs have high tensile strength and are flexible and light-weight, which make them a desirable structural component for unique, fabric-like materials. This study aims to develop a self-decontaminating, carbon nanotube-derived material that can ultimately be incorporated into a wearable fabric or protective material to minimize dermal exposure to organophosphate nerve agents and to prevent accidental exposure during decontamination procedures. Carboxylated SWCNTs were functionalized with a polymer, which contained Cu-chelating bipyridine groups, and their catalytic activity against an organophosphate simulant was measured over time. The catalytically active, functionalized nanomaterial was characterized using X-ray fluorescence and Raman spectroscopy. Assuming zeroth-order reaction kinetics, the hydrolysis rate of the organophosphate simulant, as monitored by UV-vis absorption in the presence of the catalytically active nanomaterial, was 63 times faster than the uncatalyzed hydrolysis rate for a sample containing only carboxylated SWCNTs or a control sample containing no added nanotube materials.

Keywords

single-wall carbon nanotube functionalization catalytically-active nanomaterial chemical warfare agent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2014_405_MOESM1_ESM.pdf (718 kb)
Supplementary material, approximately 717 KB.

References

  1. [1]
    Persian Gulf War Illness Task Force. Khamisiyah: A Historical Perspective on Related Intelligence [Online]. Persian Gulf War Illness Task Force; http://www.gulflink.osd.mil/cia_wp/ (accessed Aug 16, 2012).
  2. [2]
    Russell, A. J.; Berberich, J. A.; Drevon, G. F.; Koepsel, R. R. Biomaterials for mediation of chemical and biological warfare agents. Annu. Rev. Biomed. Eng. 2003, 5, 1–27.CrossRefGoogle Scholar
  3. [3]
    Munro, N. B.; Watson, A. P.; Ambrose, K. R.; Griffin, G. D. Treating exposure to chemical warfare agents: Implications for health care providers and community emergency planning. Environ. Health Perspect. 1990, 89, 205–215.CrossRefGoogle Scholar
  4. [4]
    Reutter, S. Hazards of chemical weapons release during war: New perspectives. Environ. Health Perspect. 1999, 107, 985–990.CrossRefGoogle Scholar
  5. [5]
    Brown, M. A.; Brix, K. A. Review of health consequences from high-, intermediate- and low-level exposure to organophosphorus nerve agents. J. Appl. Toxicol. 1998, 18, 393–408.CrossRefGoogle Scholar
  6. [6]
    Army Medical Department Center and School. Multiservice Tactics, Techniques, and Procedures for Treatment of Chemical Agent Casualties and Conventional Military Chemical Injuries. Departments of the Army, The Navy, and the Air Force and the Commandant of the Marine Corps: Fort Sam Houston, TX, 2007.Google Scholar
  7. [7]
    Amitai, G.; Murata, H.; Andersen, J. D.; Koepsel, R. R.; Russell, A. J. Decontamination of chemical and biological warfare agents with a single multi-functional material. Biomaterials 2010, 31, 4417–4425.CrossRefGoogle Scholar
  8. [8]
    Hight Walker, A. R.; Suenram, R. D.; Samuels, A.; Jensen, J.; Ellzy, M. W.; Lochner, J. M.; Zeroka, D. Rotational spectrum of Sarin. J. Mol. Spectrosc. 2001, 207, 77–82.CrossRefGoogle Scholar
  9. [9]
    Erdem, M.; Say, R.; Ersöz, A.; Denizli, A.; Türk, H. Biomimicking, metal-chelating and surface-imprinted polymers for the degradation of pesticides. React. Funct. Polym. 2010, 70, 238–243.CrossRefGoogle Scholar
  10. [10]
    Hartshorn, C. M.; Singh, A.; Chang, E. L. Metal-chelator polymers as organophosphate hydrolysis catalysts. J. Mater. Chem. 2002, 12, 602–605.CrossRefGoogle Scholar
  11. [11]
    Wagner, G. W.; Bartram, P. W.; Koper, O.; Klabunde, K. J. Reactions of VX, GD, and HD with nanosize MgO. J. Phys. Chem. B 1999, 103, 3225–3228.CrossRefGoogle Scholar
  12. [12]
    Wagner, G. W.; Koper, O. B.; Lucas, E.; Decker, S.; Klabunde, K. J. Reactions of VX, GD, and HD with nanosize CaO: Autocatalytic dehydrohalogenation of HD. J. Phys. Chem. B 2000, 104, 5118–5123.CrossRefGoogle Scholar
  13. [13]
    Wagner, G. W.; Procell, L. R.; O’Connor, R. J.; Munavalli, S.; Carnes, C. L.; Kapoor, P. N.; Klabunde, K. J. Reactions of VX, GB, GD, and HD with nanosize Al2O3. Formation of aluminophosphonates. J. Am. Chem. Soc. 2001, 123, 1636–1644.CrossRefGoogle Scholar
  14. [14]
    Badawi, A. M.; Hafiz, A. A.; Ibrahim, H. A. Catalytic destruction of malathion by metallornicelle layers. J. Surfactants Deterg. 2003, 6, 239–241.CrossRefGoogle Scholar
  15. [15]
    Gill, I.; Ballesteros, A. Degradation of organophosphorous nerve agents by enzyme-polymer nanocomposites: Efficient biocatalytic materials for personal protection and large-scale detoxification. Biotechnol Bioeng 2000, 70, 400–410.CrossRefGoogle Scholar
  16. [16]
    Popiel, S.; Nawala, J.; Sankowska, M.; Witkiewicz, Z.; Bernat, P. Enzymes as catalysts of decomposition of chemical warfare agents. Przem. Chem. 2010, 89, 1361–1369.Google Scholar
  17. [17]
    Yang, F. X.; Wild, J. R.; Russell, A. J. Nonaqueous biocatalytic degradation of a nerve-gas mimic. Biotechnol. Prog. 1995, 11, 471–474.CrossRefGoogle Scholar
  18. [18]
    Sharma, S. P.; Tomar, L. N. S.; Acharya, J.; Chaturvedi, A.; Suryanarayan, M. V. S.; Jain, R. Acetylcholinesterase inhibition-based biosensor for amperometric detection of Sarin using single-walled carbon nanotube-modified ferrule graphite electrode. Sens. Actuaters B-Chem. 2012, 166, 616–623.CrossRefGoogle Scholar
  19. [19]
    Wei, Y.; Liu, Z. G.; Gao, C.; Wang, L.; Liu, J. H.; Huang, X. J. Electrochemical sensors and biosensors based on nanomaterials: A new approach for detection of organic micropollutants. Prog. Chem. 2012, 24, 616–627.Google Scholar
  20. [20]
    Zeng, Y.; Yu, D.; Yu, Y.; Zhou, T.; Shi, G. Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes-poly(acrylamide) nanocomposite film modified electrode. J. Hazard. Mater. 2012, 217, 315–322.CrossRefGoogle Scholar
  21. [21]
    Sharma, P. K.; Gupta, G.; Nigam, A. K.; Pandey, P.; Boopathi, M.; Ganesan, K.; Singh, B. Photoelectrocatalytic degradation of blistering agent sulfur mustard to non-blistering substances using pPy/NiOBPC nanocomposite. J. Mol. Catal. A: Chem. 2013, 366, 368–374.CrossRefGoogle Scholar
  22. [22]
    Grandcolas, M.; Louvet, A.; Keller, N.; Keller, V. Layer-by-layer deposited titanate-based nanotubes for solar photocatalytic removal of chemical warfare agents from textiles. Angew. Chem. Int. Edit. 2009, 48, 161–164.CrossRefGoogle Scholar
  23. [23]
    Ghemes, A.; Minami, Y.; Muramatsu, J.; Okada, M.; Mimura, H.; Inoue, Y. Fabrication and mechanical properties of carbon nanotube yarns spun from ultra-long multi-walled carbon nanotube arrays. Carbon 2012, 50, 4579–4587.CrossRefGoogle Scholar
  24. [24]
    Miao, M. H. Production, structure and properties of twistless carbon nanotube yarns with a high density sheath. Carbon 2012, 50, 4973–4983.CrossRefGoogle Scholar
  25. [25]
    Steiner, S.; Busato, S.; Ermanni, P. Mechanical properties and morphology of papers prepared from single-walled carbon nanotubes functionalized with aromatic amides. Carbon 2012, 50, 1713–1719.CrossRefGoogle Scholar
  26. [26]
    Decker, J. E.; Hight Walker, A. R.; Bosnick, K.; Clifford, C. A.; Dai, L.; Fagan, J.; Hooker, S.; Jakubek, Z. J.; Kingston, C.; Makar, J. et al. Sample preparation protocols for realization of reproducible characterization of single-wall carbon nanotubes. Metrologia 2009, 46, 682–692.CrossRefGoogle Scholar
  27. [27]
    Ritchie, N. DTSA-II [Online]. National Institute of Standards and Technology (NIST); Retrieved from the Public Domain Software from NIST: http://www.cstl.nist.gov/div837/837.02/index.html (accessed Oct 24, 2012).
  28. [28]
    Ramaseshan, R.; Sundarrajan, S.; Liu, Y. J.; Barhate, R. S.; Lala, N. L.; Ramakrishna, S. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology 2006, 17, 2947–2953.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mark M. Bailey
    • 1
  • John M. Heddleston
    • 1
  • Jeffrey Davis
    • 2
  • Jessica L. Staymates
    • 2
  • Angela R. Hight Walker
    • 1
  1. 1.Semiconductor and Dimensional Metrology DivisionNational Institute of Standards and Technology (NIST)GaithersburgUSA
  2. 2.Materials Measurement Science DivisionNational Institute of Standards and Technology (NIST)GaithersburgUSA

Personalised recommendations