Nano Research

, Volume 7, Issue 3, pp 285–300 | Cite as

Doping and alloying in atomically precise gold nanoparticles

  • Rongchao Jin
  • Katsuyuki NobusadaEmail author
Review Article


The recent success in the synthesis and total structure determination of atomically precise gold nanoparticles has provided exciting opportunities for fundamental studies as well as the development of new applications. These unique nanoparticles are of molecular purity and possess well defined formulas (i.e., specific numbers of metal atoms and ligands), resembling organic compounds. Crystallization of such molecularly pure nanoparticles into macroscopic single crystals allows for the determination of total structures of nanoparticles (i.e., the arrangement of metal core atoms and surface ligands) by X-ray crystallography. In this perspective article, we summarize recent efforts in doping and alloying gold nanoparticles with other metals, including Pd, Pt, Ag and Cu. With atomically precise gold nanoparticles, a specific number of foreign atoms (e.g., Pd, Pt) can be incorporated into the gold core, whereas a range of Ag and Cu substitutions is observed but, interestingly, the total number of metal atoms in the homogold nanoparticle is preserved. The heteroatom substitution of gold nanoparticles allows one to probe the optical, structural, and electronic properties truly at the single-atom level, and thus provides a wealth of information for understanding the intriguing properties of this new class of nanomaterials.


gold nanoparticle atomic precision total structure doping alloying 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Qian, H.; Zhu, M.; Wu, Z.; Jin, R. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.CrossRefGoogle Scholar
  2. [2]
    Jin, R.; Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty, A.; Garg, N. Size focusing: A methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2903–2910.CrossRefGoogle Scholar
  3. [3]
    Maity, P.; Xie, S.; Yamauchiab, M.; Tsukuda, T. Stabilized gold clusters: From isolation toward controlled synthesis. Nanoscale 2012, 4, 4027–4037 and references therein.CrossRefGoogle Scholar
  4. [4]
    Jin, R. Quantum-sized thiolate protected gold nanoclusters. Nanoscale 2010, 2, 343–362 and references therein.CrossRefGoogle Scholar
  5. [5]
    Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.CrossRefGoogle Scholar
  6. [6]
    Tracy, J. B.; Kalyuzhny, G.; Crowe, M. C.; Balasubramanian, R.; Choi, J.-P.; Murray, R. W. Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. J. Am. Chem. Soc. 2007, 129, 6706–6707.CrossRefGoogle Scholar
  7. [7]
    Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. Kinetically controlled, high-yield synthesis of Au25 clusters. J. Am. Chem. Soc. 2008, 130, 1138–1139.CrossRefGoogle Scholar
  8. [8]
    Nimmala, P. R.; Dass, A. Au36(SPh)23 nanomolecules. J. Am. Chem. Soc. 2011, 133, 9175–9177.CrossRefGoogle Scholar
  9. [9]
    Zeng, C.; Qian, H.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. Total structure and electronic properties of the gold nanocrystal Au36(SR) 24. Angew. Chem. Int. Ed. 2012, 51, 13114–13118.CrossRefGoogle Scholar
  10. [10]
    Qian, H.; Zhu, Y.; Jin, R. Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc. Natl. Acad. Sci. USA 2012, 109, 696–700.CrossRefGoogle Scholar
  11. [11]
    Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.CrossRefGoogle Scholar
  12. [12]
    Garg, N.; Mohanty, A.; Lazarus, N.; Schultz, L.; Rozzi, T. R.; Santhanam, S.; Weiss, L.; Snyder, J. L.; Fedder, G. K.; Jin, R. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors. Nanotechnology 2010, 21, 405501.CrossRefGoogle Scholar
  13. [13]
    Liu, Y.; Tsunoyama, H.; Akita, T.; Tsukuda, T. Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite. Chem. Commun. 2010, 46, 550–552.CrossRefGoogle Scholar
  14. [14]
    Li, G.; Jin, R. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.CrossRefGoogle Scholar
  15. [15]
    Jin, R.; Cao, Y. W.; Hao, E.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003, 425, 487–490.CrossRefGoogle Scholar
  16. [16]
    Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J. Phys. Chem. B 1998, 102, 10643–10646.CrossRefGoogle Scholar
  17. [17]
    Wyrwas, R. B.; Alvarez, M. M.; Khoury, J. T.; Price, R. C.; Schaaff, T. G.; Whetten, R. L. The colours of nanometric gold: Optical response functions of selected gold-cluster thiolates. Eur. Phys. J. D 2007, 43, 91–95.CrossRefGoogle Scholar
  18. [18]
    Nobusada, K.; Iwasa, T. Oligomeric gold clusters with vertex-sharing bi- and triicosahedral structures. J. Phys. Chem. C 2007, 111, 14279–14282.CrossRefGoogle Scholar
  19. [19]
    Pei, Y.; Zeng, X. C. Investigating the structural evolution of thiolate protected gold clusters from first-principles. Nanoscale 2012, 4, 4054–4072 and references therein.CrossRefGoogle Scholar
  20. [20]
    Jiang, D.; Dai, S. From superatomic Au25(SR)18 to superatomic M@Au24(SR)18 shell clusters. Inorg. Chem. 2009, 48, 2720–2722.CrossRefGoogle Scholar
  21. [21]
    Kacprzak, K. A.; Lehtovaara, L.; Akola, J.; Lopez-Acevedoa, O.; Hakkinen, H. A density functional investigation of thiolate-protected bimetal PdAu24(SR)18 z clusters: Doping the superatom complex. Phys. Chem. Chem. Phys. 2009, 11, 7123–7129.CrossRefGoogle Scholar
  22. [22]
    Guidez, E. B.; Mäkinen, V.; Häkkinen, H.; Aikens, C. M. Effects of silver doping on the geometric and electronic structure and optical absorption spectra of the Au25−nAgn(SH)18 (n = 1, 2, 4, 6, 8, 10, 12) bimetallic nanoclusters. J. Phys. Chem. C 2012, 116, 20617–20624.CrossRefGoogle Scholar
  23. [23]
    Sánchez-Castillo, A.; Noguez, C.; Garzón, I. L. On the origin of the optical activity displayed by chiral-ligand-protected metallic nanoclusters. J. Am. Chem. Soc. 2010, 132, 1504–1505.CrossRefGoogle Scholar
  24. [24]
    Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 25, 377–445.CrossRefGoogle Scholar
  25. [25]
    Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters. Springer-Verlag: New York, 1995.CrossRefGoogle Scholar
  26. [26]
    Donkers, R. L.; Lee, D.; Murray, R. W. Synthesis and isolation of the molecule-like cluster Au38(PhCH2CH2S)24. Langmuir 2004, 20, 1945–1952.CrossRefGoogle Scholar
  27. [27]
    Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754–3755.CrossRefGoogle Scholar
  28. [28]
    Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.CrossRefGoogle Scholar
  29. [29]
    Wu, Z.; Gayathri, C.; Gil, R.; Jin, R. Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J. Am. Chem. Soc. 2009, 131, 6535–6542.CrossRefGoogle Scholar
  30. [30]
    Venzo, A.; Antonello, S.; Gascon, J. A.; Guryanov, I.; Leapman, R. D.; Perera, N. V.; Sousa, A. A.; Zamuner, M.; Zanella, A.; Maran, F. Effect of the charge state (z = −1, 0, +1) on the nuclear magnetic resonance of monodisperse Au25[S(CH2)2Ph]18z. Anal. Chem. 2011, 83, 6355–6362.CrossRefGoogle Scholar
  31. [31]
    Liu, Z.; Zhu, M.; Meng, X.; Xu, G.; Jin, R. Electron transfer between Au25(SC2H4Ph)18TOA+ nanoclusters and oxoammonium cations. J. Phys. Chem. Lett. 2011, 2, 2104–2109.CrossRefGoogle Scholar
  32. [32]
    Aikens, C. M. Electronic Structure of ligand-passivated gold and silver nanoclusters. J. Phys. Chem. Lett. 2011, 2, 99–104.CrossRefGoogle Scholar
  33. [33]
    Zhu, M.; Eckenhoff, W. T.; Pintauer, T.; Jin, R. Conversion of anionic [Au25(SCH2CH2Ph)18] cluster to charge neutral cluster via air oxidation. J. Phys. Chem. C 2008, 112, 14221–14224.CrossRefGoogle Scholar
  34. [34]
    Zhu, M.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H.; Schatz, G. C.; Jin, R. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J. Am. Chem. Soc. 2009, 131, 2490–2492.CrossRefGoogle Scholar
  35. [35]
    Fields-Zinna, C. A.; Crowe, M. C.; Dass, A.; Weaver, J. E. F.; Murray, R. W. Mass spectrometry of small bimetal monolayer-protected clusters. Langmuir 2009, 25, 7704–7710.CrossRefGoogle Scholar
  36. [36]
    Walter, M.; Moseler, M. Ligand-protected gold alloy clusters: Doping the superatom. J. Phys. Chem. C 2009, 113, 15834–15837.CrossRefGoogle Scholar
  37. [37]
    Negishi, Y.; Kurashige, W.; Niihori, Y.; Iwasa, T.; Nobusada, K. Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24 cluster. Phys. Chem. Chem. Phys. 2010, 12, 6219–6225.CrossRefGoogle Scholar
  38. [38]
    Qian, H.; Barry, E.; Zhu, Y.; Jin, R. Doping 25-atom and 38-atom gold nanoclusters with palladium. Acta Phys. -Chim. Sin. 2011, 27, 513–519.Google Scholar
  39. [39]
    Wu, Z.; Suhan, J.; Jin, R. One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J. Mater. Chem. 2009, 19, 622–626.CrossRefGoogle Scholar
  40. [40]
    Parker, J. F.; Weaver, J. E. F.; McCallum, F.; Fields-Zinna, C. A.; Murray, R. W. Synthesis of monodisperse [Oct4N+][Au25(SR)18] nanoparticles, with some mechanistic observations. Langmuir 2010, 26, 13650–13654.CrossRefGoogle Scholar
  41. [41]
    Zhu, M.; Chan, G.; Qian, H.; Jin, R. Unexpected reactivity of Au25(SCH2CH2Ph)18 nanoclusters with salts. Nanoscale 2011, 3, 1703–1707.CrossRefGoogle Scholar
  42. [42]
    Niihori, Y.; Kurashige, W.; Matsuzaki, M.; Negishi, Y. Remarkable enhancement in ligand-exchange reactivity of thiolate-protected Au25 nanoclusters by single Pd atom doping. Nanoscale 2013, 5, 508–512.CrossRefGoogle Scholar
  43. [43]
    Zhu, M.; Qian, H.; Meng, X.; Jin, S.; Wu, Z.; Jin, R. Chiral Au25 nanospheres and nanorods: Synthesis and insight into the origin of chirality. Nano Lett. 2011, 11, 3963–3969.CrossRefGoogle Scholar
  44. [44]
    Kumar, S.; Jin, R. Water-soluble Au25(Capt)18 nanoclusters: Synthesis, thermal stability, and optical properties. Nanoscale 2012, 4, 4222–4227.CrossRefGoogle Scholar
  45. [45]
    Qian, H.; Jiang, D.-E.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R. Monoplatinum doping of gold nanoclusters and catalytic application. J. Am. Chem. Soc. 2012, 134, 16159–16162.CrossRefGoogle Scholar
  46. [46]
    MacDonald, M. A.; Chevrier, D. M.; Zhang, P.; Qian, H.; Jin, R. The structure and bonding of Au25(SR)18 nanoclusters from EXAFS: The interplay of metallic and molecular behavior. J. Phys. Chem. C 2011, 115, 15282–15287.CrossRefGoogle Scholar
  47. [47]
    Christensen, S. L.; MacDonald, M. A.; Chatt, A.; Zhang, P.; Qian, H.; Jin, R. Dopant location, local structure, and electronic properties of Au24Pt(SR)18 nanoclusters. J. Phys. Chem. C 2012, 116, 26932–26937.CrossRefGoogle Scholar
  48. [48]
    Negishi, Y.; Iwai, T.; Ide, M. Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. Chem. Commun. 2010, 46, 4713–4715.CrossRefGoogle Scholar
  49. [49]
    Gottlieb, E.; Qian, H.; Jin, R. Atomic-level alloying and de-alloying in doped gold nanoparticles. Chem. Eur. J. 2013, 19, 4238–4243.CrossRefGoogle Scholar
  50. [50]
    Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. A quantum alloy: The ligand-protected Au25-xAgx(SR)18 cluster. J. Phys. Chem. C 2013, 117, 7914–7923.CrossRefGoogle Scholar
  51. [51]
    Ackerman, M.; Stafford, F. E.; Drowart, J. Mass spectrometric determination of the dissociation energies of the molecules AgAu, AgCu, and AuCu. J. Chem. Phys. 1960, 33, 1784–1789.CrossRefGoogle Scholar
  52. [52]
    Negishi, Y.; Munakata, K.; Ohgake, W.; Nobusada, K. Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au25 nanoclusters. J. Phys. Chem. Lett. 2012, 3, 2209–2214.CrossRefGoogle Scholar
  53. [53]
    Chaki, N. K.; Negishi, Y.; Tsunoyama, H.; Shichibu, Y.; Tsukuda, T. Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: Mass-spectrometric determination of molecular formulas and structural implications. J. Am. Chem. Soc. 2008, 130, 8608–8610.CrossRefGoogle Scholar
  54. [54]
    Qian, H.; Zhu, Y.; Jin, R. Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 2009, 3, 3795–3803.CrossRefGoogle Scholar
  55. [55]
    Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281.CrossRefGoogle Scholar
  56. [56]
    Pei, Y.; Gao, Y.; Zeng, X. C. Structural prediction of thiolate-protected Au38: A face-fused bi-icosahedral Au core. J. Am. Chem. Soc. 2008, 130, 7830–7832.CrossRefGoogle Scholar
  57. [57]
    Lopez-Acevedo, O.; Tsunoyama, H.; Tsukuda, T.; Häkkinen, H.; Aikens, C. M. Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J. Am. Chem. Soc. 2010, 132, 8210–8218.CrossRefGoogle Scholar
  58. [58]
    Toikkanen, O.; Carlsson, S.; Dass, A.; Rönnholm, G.; Kalkkinen, N.; Quinn, B. M. Solvent-dependent stability of monolayer-protected Au38 clusters. J. Phys. Chem. Lett. 2010, 1, 32–37.CrossRefGoogle Scholar
  59. [59]
    Qian, H.; Zhu, M.; Gayathri, C.; Gil, R. R.; Jin, R. Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano 2011, 5, 8935–8942.CrossRefGoogle Scholar
  60. [60]
    Knoppe, S.; Azoulay, R.; Dass, A.; Bürgi, T. In situ reaction monitoring reveals a diastereoselective ligand exchange reaction between the intrinsically chiral Au38(SR)24 and chiral thiols. J. Am. Chem. Soc. 2012, 134, 20302–20305.CrossRefGoogle Scholar
  61. [61]
    Devadas, M. S.; Bairu, S.; Qian, H.; Sinn, E.; Jin, R.; Ramakrishna, G. Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters. J. Phys. Chem. Lett. 2011, 2, 2752–2758.CrossRefGoogle Scholar
  62. [62]
    Negishi, Y.; Igarashi, K.; Munakata, K.; Ohgake, W.; Nobusada, K. Palladium doping of magic gold cluster Au38(SC2H4Ph)24: Formation of Pd2Au36(SC2H4Ph)24 with higher stability than Au38(SC2H4Ph)24. Chem. Commun. 2012, 48, 660–662.CrossRefGoogle Scholar
  63. [63]
    Kumara, C.; Dass, A. AuAg alloy nanomolecules with 38 metal atoms. Nanoscale 2012, 4, 4084–4086.CrossRefGoogle Scholar
  64. [64]
    Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.CrossRefGoogle Scholar
  65. [65]
    Qian, H.; Jin, R. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett. 2009, 9, 4083–4087.CrossRefGoogle Scholar
  66. [66]
    Qian, H.; Jin, R. Ambient synthesis of Au144(SR)60 nanoclusters in methanol. Chem. Mater. 2011, 23, 2209–2217.CrossRefGoogle Scholar
  67. [67]
    Kumara, C.; Dass, A. (AuAg)144(SR)60 alloy nanomolecules. Nanoscale 2011, 3, 3064–3067.CrossRefGoogle Scholar
  68. [68]
    Koivisto, J.; Malola, S.; Kumara, C.; Dass, A.; Häkkinen, H.; Pettersson, M. Experimental and theoretical determination of the optical gap of the Au144(SC2H4Ph)60 cluster and the (Au/Ag)144(SC2H4Ph)60 nanoalloys. J. Phys. Chem. Lett. 2012, 3, 3076–3080.CrossRefGoogle Scholar
  69. [69]
    Malola, S.; Häkkinen, H. Electronic structure and bonding of icosahedral core-shell gold-silver nanoalloy clusters Au144−xAgx(SR)60. J. Phys. Chem. Lett. 2011, 2, 2316–2321.CrossRefGoogle Scholar
  70. [70]
    Xie, S.; Tsunoyama, H.; Kurashige, W.; Negishi, Y.; Tsukuda, T. Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal. 2012, 2, 1519–1523.CrossRefGoogle Scholar
  71. [71]
    Kurashige, W.; Munakata, K.; Nobusada, K.; Negishi, Y. Synthesis of stable CunAu25−n nanoclusters (n = 1–9) using selenolate ligands. Chem. Commun. 2013, 49, 5447–5449.CrossRefGoogle Scholar
  72. [72]
    Yao, H.; Miki, K.; Nishida, N.; Sasaki, A.; Kimura, K. Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines. J. Am. Chem. Soc. 2005, 127, 15536–15543.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Theoretical and Computational Molecular ScienceInstitute for Molecular ScienceMyodaiji, OkazakiJapan
  3. 3.Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University KatsuraKyotoJapan

Personalised recommendations