Nano Research

, Volume 7, Issue 3, pp 380–389 | Cite as

Ionic effects on the transport characteristics of nanowire-based FETs in a liquid environment

  • Daijiro Nozaki
  • Jens Kunstmann
  • Felix Zörgiebel
  • Sebastian Pregl
  • Larysa Baraban
  • Walter M. Weber
  • Thomas Mikolajick
  • Gianaurelio Cuniberti
Research Article


For the development of ultra-sensitive electrical bio/chemical sensors based on nanowire field effect transistors (FETs), the influence of the ions in the solution on the electron transport has to be understood. For this purpose we establish a simulation platform for nanowire FETs in the liquid environment by implementing the modified Poisson-Boltzmann model into Landauer transport theory. We investigate the changes of the electric potential and the transport characteristics due to the ions. The reduction of sensitivity of the sensors due to the screening effect from the electrolyte could be successfully reproduced. We also fabricated silicon nanowire Schottky-barrier FETs and our model could capture the observed reduction of the current with increasing ionic concentration. This shows that our simulation platform can be used to interpret ongoing experiments, to design nanowire FETs, and it also gives insight into controversial issues such as whether ions in the buffer solution affect the transport characteristics or not.


nanowire field effect transistors (FETs) biosensors silicon nanowires Poisson-Boltzmann theory Landauer model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_404_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1.17 MB.


  1. [1]
    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.CrossRefGoogle Scholar
  2. [2]
    Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical properties of carbon nanotubes; Imperial College Press: London, 1998.CrossRefGoogle Scholar
  3. [3]
    Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.CrossRefGoogle Scholar
  4. [4]
    Westwater, J.; Gosain, D. P.; Tomiya, S.; Usui, S.; Ruda, H. Growth of silicon nanowires via gold/silane vapor-liquidsolid reaction. J. Vac. Sci. Technol. B 1997, 15, 554–557.CrossRefGoogle Scholar
  5. [5]
    Schmidt, V.; Wittemann, J. V.; Gösele, U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 2010, 110, 361–388.CrossRefGoogle Scholar
  6. [6]
    Rurali, R. Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev. Mod. Phys. 2010, 82, 427–449.CrossRefGoogle Scholar
  7. [7]
    Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room- temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.CrossRefGoogle Scholar
  8. [8]
    Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, Ph. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.CrossRefGoogle Scholar
  9. [9]
    Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefGoogle Scholar
  10. [10]
    Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.CrossRefGoogle Scholar
  11. [11]
    Lauhon, L. J.; Gudiksen, M. S.; Wang, D.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57–61.CrossRefGoogle Scholar
  12. [12]
    Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z. L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871.CrossRefGoogle Scholar
  13. [13]
    Hahm, J.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.CrossRefGoogle Scholar
  14. [14]
    Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, Ph. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 2002, 89, 106801.CrossRefGoogle Scholar
  15. [15]
    Appenzeller, J. M.; Radosavljevic, M.; Knoch, J.; Avouris, Ph. Tunneling versus thermionic emission in one-dimensional semiconductors. Phys. Rev. Lett. 2004, 92, 048301.CrossRefGoogle Scholar
  16. [16]
    Nair, P. R.; Alam, M. A. Design considerations of silicon nanowire biosensors. IEEE Trans. Elec. Dev. 2007, 54, 3400–3408.CrossRefGoogle Scholar
  17. [17]
    Heitzinger, C.; Kennell, R.; Klimeck, G.; Mauser, N.; McLennan, M.; Ringhofer, C. Modeling and simulation of field-effect biosensors (biofets) and their deployment on the NanoHub. J. Phys.: Conf. Ser. 2008, 107, 012004.Google Scholar
  18. [18]
    Birner, S.; Hackenbuchner, S.; Sabathil, M.; Zandler, G.; Majewski, J. A.; Andlauer, T.; Zibold, T.; Morschl, R.; Trellakis, A.; Vogl, P. Modeling of semiconductor nanostructures with nextnano3. Acta Phys. Polon. 2006, 111, 111–115.Google Scholar
  19. [19]
    Lee, J.; Shin, M.; Ahn, C. G.; Ah, C. S.; Park, C. W.; Sung, G. Y. Effects of pH and ion concentration in a phosphate buffer solution on the sensitivity of silicon nanowire bioFETs. J. Korean Phys. Soc. 2009, 55, 1621–1625.CrossRefGoogle Scholar
  20. [20]
    Elfström, N.; Juhasz, R.; Sychugov, I.; Engfeldt, T.; Karlström, A. E. Surface charge sensitivity of silicon nanowires: Size dependence. Nano Lett. 2007, 7, 2608–2612.CrossRefGoogle Scholar
  21. [21]
    Chen, Y.; Wang, X.; Erramilli, S.; Mohanty, P.; Kalinowski, A. Silicon-based nanoelectronic field-effect pH sensor with local gate control. App. Phys. Lett. 2006, 89, 223512.CrossRefGoogle Scholar
  22. [22]
    Li, Z.; Chen, Y.; Li, X.; Kamins, T. I.; Nauka, K.; Williams, R. S. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 2004, 4, 245–247.CrossRefGoogle Scholar
  23. [23]
    Fan, Z.; Lu, J. G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 2005, 86, 123510.CrossRefGoogle Scholar
  24. [24]
    Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007, 7, 3405–3409.CrossRefGoogle Scholar
  25. [25]
    Kurkina, T.; Vlandas, A.; Ahmad, A.; Kern, K.; Balasubramanian, K. Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew. Chem. Int. Ed. 2011, 50, 3710–3714.CrossRefGoogle Scholar
  26. [26]
    Russel, W. B.; Saville, D. A.; Schowalter, W. R. Colloidal Dispersions; Cambridge University Press: Cambridge, 1989.CrossRefGoogle Scholar
  27. [27]
    Borukhov, I.; Andelman, D.; Orland, H. Steric effects in electrolytes: A modified Poisson-Boltzmann equation. Phys. Rev. Lett. 1997, 79, 435–438.CrossRefGoogle Scholar
  28. [28]
    Pham, P.; Howorth, M.; Planat-Chretien, A.; Tardu, S. Numerical simulation of the electrical double layer based on the Poisson-Boltzmann models for ac electroosmosis flows. COMSOL Users Conference 2007, Grenoble, 2007.Google Scholar
  29. [29]
    Kilic, M. S.; Bazant, M. Z.; Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 2007, 75, 021502.CrossRefGoogle Scholar
  30. [30]
    Kilic, M. S.; Bazant, M. Z.; Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 2007, 75, 021503.CrossRefGoogle Scholar
  31. [31]
    Nozaki, D.; Kunstmann, J.; Zörgiebel, F.; Weber, W. M.; Mikolajick, T.; Cuniberti, G. Multiscale modeling of nanowirebased Schottky-barrier field-effect transistors for sensor applications. Nanotechnology 2011, 22, 325703.CrossRefGoogle Scholar
  32. [32]
    COMSOL Multiphysics, version 3.5
  33. [33]
    Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, 1995.CrossRefGoogle Scholar
  34. [34]
    Clément, N.; Nishiguchi, K.; Dufreche, J. F.; Guerin, D.; Fujisawa, A.; Vuillaume, D. A silicon nanowire ion-sensitive field-effect transistor with elementary charge sensitivity. Appl. Phys. Lett. 2001, 98, 014104.CrossRefGoogle Scholar
  35. [35]
    Knopfmacher, O.; Tarasov, A.; Wipf, M.; Fu, W.; Calame, M.; Schönenberger, C. Silicon-based ion-sensitive field-effect transistor shows negligible dependence on salt concentration at constant pH. ChemPhysChem 2012, 13, 1157–1160.CrossRefGoogle Scholar
  36. [36]
    Nikolaides, M. G.; Rauschenbach, S.; Luber, S.; Buchholz, K.; Tornow, M.; Abstreiter, G.; Bausch, A. R. Silicon-on-insulator based thin-film resistor for chemical and biological sensor applications. ChemPhysChem 2003, 4, 1104–1106.CrossRefGoogle Scholar
  37. [37]
    Park, I.; Li, Z.; Pisano, A. P.; Williams, R. S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 2010, 21, 015501.CrossRefGoogle Scholar
  38. [38]
    Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Chèze, C.; Riechert, H.; Lugli, P.; Kreupl, F. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2010, 6, 2660–2666.CrossRefGoogle Scholar
  39. [39]
    Pregl, S.; Weber, W. M.; Nozaki, D.; Kunstmann, J.; Baraban, L.; Optiz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381–388.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daijiro Nozaki
    • 1
  • Jens Kunstmann
    • 1
    • 2
  • Felix Zörgiebel
    • 1
  • Sebastian Pregl
    • 1
  • Larysa Baraban
    • 1
  • Walter M. Weber
    • 3
  • Thomas Mikolajick
    • 3
  • Gianaurelio Cuniberti
    • 1
    • 4
    • 5
  1. 1.Institute for Materials Science and Max Bergmann Center of BiomaterialsTU DresdenDresdenGermany
  2. 2.Department of ChemistryColumbia UniversityNew YorkUSA
  3. 3.NaMlab gGmbHDresdenGermany
  4. 4.Center for Advancing Electronics Dresden (cfAED)TU DresdenDresdenGermany
  5. 5.Dresden Center for Computational Materials Science (DCCMS)TU DresdenDresdenGermany

Personalised recommendations