Nano Research

, Volume 7, Issue 2, pp 263–271 | Cite as

Schottky barrier-based silicon nanowire pH sensor with live sensitivity control

  • Felix M. Zörgiebel
  • Sebastian Pregl
  • Lotta Römhildt
  • Jörg Opitz
  • W. Weber
  • T. Mikolajick
  • Larysa Baraban
  • Gianaurelio Cuniberti
Research Article


We demonstrate a pH sensor based on ultrasensitive nanosize Schottky junctions formed within bottom-up grown dopant-free arrays of assembled silicon nanowires. A new measurement concept relying on a continuous gate sweep is presented, which allows the straightforward determination of the point of maximum sensitivity of the device and allows sensing experiments to be performed in the optimum regime. Integration of devices into a portable fluidic system and an electrode isolation strategy affords a stable environment and enables long time robust FET sensing measurements in a liquid environment to be carried out. Investigations of the physical and chemical sensitivity of our devices at different pH values and a comparison with theoretical limits are also discussed. We believe that such a combination of nanofabrication and engineering advances make this Schottky barrier-powered silicon nanowire lab-on-a-chip platform suitable for efficient biodetection and even for more complex biochemical analysis.


silicon nanowires field effect transistor sub-threshold regime nanosensors pH sensor bottom-up fabrication maximum sensitivity of sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_393_MOESM1_ESM.pdf (754 kb)
Supplementary material, approximately 754 KB.


  1. [1]
    Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurement. IEEE T. Bio-Med. Eng. 1970, BME-17, 70–71.CrossRefGoogle Scholar
  2. [2]
    Bergveld, P. The impact of MOSFET-based sensors. Sensor. Actuat. 1985, 8, 109–127.CrossRefGoogle Scholar
  3. [3]
    Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefGoogle Scholar
  4. [4]
    Spijkman, M.-J.; Brondijk, J. J.; Geuns, T. C. T.; Smits, E. C. P.; Cramer, T.; Zerbetto, F.; Stoliar, P.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M. Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution. Adv. Funct. Mater. 2010, 20, 898–905.CrossRefGoogle Scholar
  5. [5]
    Zumdahl, S. Chemical Principles (6th ed.); Houghton Mifflin Company; New York, 2009; pp 319–324.Google Scholar
  6. [6]
    Hahm, J.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.CrossRefGoogle Scholar
  7. [7]
    Gao, Z. Q.; Agarwal, A.; Trigg, A. D.; Singh, N.; Fang, C.; Tung, C.-H.; Fan, Y.; Buddharaju, K. D.; Kong, J. M. Silicon nanowire arrays for label-free detection of DNA. Anal. Chem. 2007, 79, 3291–3297.CrossRefGoogle Scholar
  8. [8]
    Cattani-Scholz, A.; Pedone, D.; Dubey, M.; Neppl, S.; Nickel, B.; Feulner, P.; Schwartz, J.; Abstreiter, G.; Tornow, M. Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection. ACS Nano 2008, 2, 1653–1660.CrossRefGoogle Scholar
  9. [9]
    Gao, A. R.; Lu, N.; Dai, P. F.; Li, T.; Pei, H.; Gao, X. L.; Gong, Y. B.; Wang, Y. L.; Fan, C. H. Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 2011, 11, 3974–3978.CrossRefGoogle Scholar
  10. [10]
    Kurkina, T.; Vlandas, A.; Ahmad, A.; Kern, K.; Balasubramanian, K. Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew. Chem. Int. Ed. 2011, 50, 3710–3714.CrossRefGoogle Scholar
  11. [11]
    Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. PNAS 2004, 101, 14017–14022.CrossRefGoogle Scholar
  12. [12]
    Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.CrossRefGoogle Scholar
  13. [13]
    Susloparova, A.; Koppenhöfer, D.; Vu, X. T.; Weil, M.; Ingebrandt, S. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Biosens. Bioelectron. 2012, 40, 50–56.CrossRefGoogle Scholar
  14. [14]
    Patolsky, F.; Timko, B.; Yu, G. H.; Fang, Y.; Greytak, A.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100–1104.CrossRefGoogle Scholar
  15. [15]
    Lambacher, A.; Vitzthum, V.; Zeitler, R.; Eickenscheidt, M.; Eversmann, B.; Thewes, R.; Fromherz, P. Identifying firing mammalian neurons in networks with high-resolution multitransistor array (MTA). Appl. Phys. A 2011, 102, 1–11.CrossRefGoogle Scholar
  16. [16]
    Esashi, M.; Matsuo, T. Integrated micro multi ion sensor using field effect of semiconductor. IEEE T. Bio-Med. Eng. 1978, BME-25, 184–192.CrossRefGoogle Scholar
  17. [17]
    Elfström, N.; Karlström, A. E.; Linnros, J. Silicon nanoribbons for electrical detection of biomolecules. Nano Lett. 2008, 8, 945–949.CrossRefGoogle Scholar
  18. [18]
    Vu, X. T.; Ghoshmoulick, R.; Eschermann, J. F.; Stockmann, R.; Offenhäusser, A.; Ingebrandt, S. Fabrication and application of silicon nanowire transistor arrays for biomolecular detection. Sensor. Actuat. B-Chem. 2010, 144, 354–360.CrossRefGoogle Scholar
  19. [19]
    Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protocol. 2006, 1, 1711–1724.CrossRefGoogle Scholar
  20. [20]
    Balasubramanian, K.; Lee, E. J. H.; Weitz, R. T.; Burghard, M.; Kern, K. Carbon nanotube transistors—Chemical functionalization and device characterization. Phys. Stat. Solidi A 2008, 205, 633–646.CrossRefGoogle Scholar
  21. [21]
    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.CrossRefGoogle Scholar
  22. [22]
    Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Controlled growth and structures of molecularscale silicon nanowires. Nano Lett. 2004, 4, 433–436.CrossRefGoogle Scholar
  23. [23]
    Nerowski, A.; Poetschke, M.; Bobeth, M.; Opitz, J.; Cuniberti, G. Dielectrophoretic growth of platinum nanowires: Concentration and temperature dependence of the growth velocity. Langmuir 2012, 28, 7498–7504.CrossRefGoogle Scholar
  24. [24]
    Shin, K.-S.; Pan, A.; Chui, C. O. Channel length dependent sensitivity of Schottky contacted silicon nanowire field-effect transistor sensors. Appl. Phys. Lett. 2012, 100, 123504.CrossRefGoogle Scholar
  25. [25]
    Pregl, S.; Weber, W. M.; Nozaki, D.; Kunstmann, J.; Baraban, L.; Opitz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381–388.CrossRefGoogle Scholar
  26. [26]
    Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Chèze, C.; Riechert, H.; Lugli, P.; et al. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2006, 6, 2660–2666.CrossRefGoogle Scholar
  27. [27]
    Heinzig, A.; Slesazeck, S.; Kreupl, F.; Mikolajick, T.; Weber, W. M. Reconfigurable silicon nanowire transistors. Nano Lett. 2012, 12, 119–124.CrossRefGoogle Scholar
  28. [28]
    Martin, D.; Heinzig, A.; Grube, M.; Geelhaar, L.; Mikolajick, T.; Riechert, H.; Weber, W. M. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Phys. Rev. Lett. 2011, 107, 216807.CrossRefGoogle Scholar
  29. [29]
    Nozaki, D.; Kunstmann, J.; Zörgiebel, F. M.; Weber, W. M.; Mikolajick, T.; Cuniberti, G. Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications. Nanotechnology 2011, 22, 325703.CrossRefGoogle Scholar
  30. [30]
    Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547–552.CrossRefGoogle Scholar
  31. [31]
    Hu, Y. F.; Zhou, J.; Yeh, P.-H.; Li, Z.; Wei, T.-Y.; Wang, Z. L. Supersensitive, fast-response nanowire sensors by using Schottky contacts. Adv. Mater. 2010, 22, 3327–3332.CrossRefGoogle Scholar
  32. [32]
    Skucha, K.; Fan, Z. Y.; Jeon, K.; Javey, A.; Boser, B. Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sensor. Actuat.: B-Chem. 2010, 145, 232–238.CrossRefGoogle Scholar
  33. [33]
    Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensor. Actuat.: B-Chem. 2003, 88, 1–20.CrossRefGoogle Scholar
  34. [34]
    Knopfmacher, O.; Tarasov, A.; Fu, W. Y.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 2010, 10, 2268–2274.CrossRefGoogle Scholar
  35. [35]
    Spijkman, M.; Smits, E. C. P.; Cillessen, J. F. M.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M. Beyond the Nernstlimit with dual-gate ZnO ion-sensitive field-effect transistors. Appl. Phys. Lett. 2011, 98, 043502.CrossRefGoogle Scholar
  36. [36]
    Bergveld, P. ISFET, Theory and Practice. IEEE Sensor Conference, October 2003. IEEE: Toronto, 2003.Google Scholar
  37. [37]
    Tarasov, A.; Wipf, M.; Bedner, K.; Kurz, J.; Fu, W.; Guzenko, V. A.; Knopfmacher, O.; Stoop, R. L.; Calame, M.; Schönenberger, C. True reference nanosensor realized with silicon nanowires. Langmuir 2012, 28, 9899–9905.CrossRefGoogle Scholar
  38. [38]
    Fan, Z. Y.; Ho, J.; Jacobson, Z.; Yerushalmi, R.; Alley, R.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20–25.CrossRefGoogle Scholar
  39. [39]
    Ishikawa, F.; Chang, H.-K.; Ryu, K.; Chen, P.-C.; Badmaev, A.; De Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Felix M. Zörgiebel
    • 1
    • 5
  • Sebastian Pregl
    • 1
    • 5
  • Lotta Römhildt
    • 1
  • Jörg Opitz
    • 3
  • W. Weber
    • 2
    • 5
  • T. Mikolajick
    • 4
    • 5
  • Larysa Baraban
    • 1
  • Gianaurelio Cuniberti
    • 1
    • 5
  1. 1.Institute for Materials Science and Max Bergmann Center of BiomaterialsTU DresdenDresdenGermany
  2. 2.NaMLab GmbHDresdenGermany
  3. 3.Fraunhofer Institute IZFP DresdenDresdenGermany
  4. 4.Institute for Semiconductors and Microsystems TechnologyTU DresdenDresdenGermany
  5. 5.Center for Advancing Electronics DresdenTU DresdenDresdenGermany

Personalised recommendations