Nano Research

, Volume 7, Issue 2, pp 163–170 | Cite as

Carrier dynamics and doping profiles in GaAs nanosheets

  • Chia-Chi Chang
  • Chun-Yung Chi
  • Chun-Chung Chen
  • Ningfeng Huang
  • Shermin Arab
  • Jing Qiu
  • Michelle L. Povinelli
  • P. Daniel Dapkus
  • Stephen B. Cronin
Research Article


We have recently demonstrated that GaAs nanosheets can be grown by metal-organic chemical vapor deposition (MOCVD). Here, we investigate these nanosheets by secondary electron scanning electron microscopy (SE-SEM) and electron beam induced current (EBIC) imaging. An abrupt boundary is observed between an initial growth region and an overgrowth region in the nanosheets. The SE-SEM contrast between these two regions is attributed to the inversion of doping at the boundary. EBIC mapping reveals a p-n junction formed along the boundary between these two regions. Rectifying I–V behavior is observed across the boundary further indicating the formation of a p-n junction. The electron concentration (ND) of the initial growth region is around 1 × 1018 cm−3, as determined by both Hall effect measurements and low temperature photoluminescence (PL) spectroscopy. Based on the EBIC data, the minority carrier diffusion length of the nanosheets is 177 nm, which is substantially longer than the corresponding length in unpassivated GaAs nanowires measured previously.


MOCVD GaAs nanosheets EBIC Hall measurement secondary electron emission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_383_MOESM1_ESM.pdf (566 kb)
Supplementary material, approximately 577 KB.


  1. [1]
    Gutsche, C.; Lysov, A.; Braam, D.; Regolin, I.; Keller, G.; Li, Z.-A.; Geller, M.; Spasova, M.; Prost, W.; Tegude, F.-J. n-GaAs/InGaP/p-GaAs core-multishell nanowire diodes for efficient light-to-current conversion. Adv. Funct. Mater. 2012, 22, 929–936.CrossRefGoogle Scholar
  2. [2]
    Mariani, G.; Wong, P.-S.; Katzenmeyer, A. M.; Léonard, F.; Shapiro, J.; Huffaker, D. L. Patterned radial GaAs nanopillar solar cells. Nano Lett. 2011, 11, 2490–2494.CrossRefGoogle Scholar
  3. [3]
    Baxter, J. B.; Aydil, E. S. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 2005, 86, 053114.CrossRefGoogle Scholar
  4. [4]
    Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.CrossRefGoogle Scholar
  5. [5]
    Colombo, C.; Heiss, M.; Graetzel, M.; Fontcuberta i Morral, A. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 2009, 94, 173108–3.CrossRefGoogle Scholar
  6. [6]
    Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat Nano, 2008, 3, 31–35.CrossRefGoogle Scholar
  7. [7]
    Cui, L.-F.; Ruffo, R.; Chan, C. K.; Peng, H.; Cui, Y. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 2009, 9, 491–495.CrossRefGoogle Scholar
  8. [8]
    Lai, E.; Kim, W.; Yang, P. Vertical nanowire array-based light emitting diodes. Nano Res. 2008, 1, 123–128.CrossRefGoogle Scholar
  9. [9]
    Guo, W.; Banerjee, A.; Bhattacharya, P.; Ooi, B. S. InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon. App. Phys. Lett. 2011, 98, 193102.CrossRefGoogle Scholar
  10. [10]
    Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.CrossRefGoogle Scholar
  11. [11]
    Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449, 885–889.CrossRefGoogle Scholar
  12. [12]
    Gutsche, C.; Niepelt, R.; Gnauck, M.; Lysov, A.; Prost, W.; Ronning, C.; Tegude, F.-J. Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions. Nano Lett. 2012, 12, 1453–1458.CrossRefGoogle Scholar
  13. [13]
    Breuer, S.; Pfüller, C.; Flissikowski, T.; Brandt, O.; Grahn, H. T.; Geelhaar, L.; Riechert, H. Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications. Nano Lett. 2011, 11, 1276–1279.CrossRefGoogle Scholar
  14. [14]
    Chang, C.-C.; Chi, C.-Y.; Yao, M.; Huang, N.; Chen, C.-C.; Theiss, J.; Bushmaker, A. W.; LaLumondiere, S.; Yeh, T.-W.; Povinelli, M. L.; Zhou, C.; Dapkus, P. D.; Cronin, S. B. Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett. 2012, 12, 4484–4489.CrossRefGoogle Scholar
  15. [15]
    Madaria, A. R.; Yao, M.; Chi, C.; Huang, N.; Lin, C.; Li, R.; Povinelli, M. L.; Dapkus, P. D.; Zhou, C. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth. Nano Lett. 2012, 12, 2839–2845.CrossRefGoogle Scholar
  16. [16]
    Ikejiri, K.; Sato, T.; Yoshida, H.; Hiruma, K.; Motohisa, J.; Hara, S.; Fukui, T. Growth characteristics of GaAs nanowires obtained by selective area metal-organic vapour-phase epitaxy. Nanotechnology 2008, 19, 265604.CrossRefGoogle Scholar
  17. [17]
    Chi, C.-Y.; Chang, C.-C.; Hu, S.; Yeh, T.-W.; Cronin, S. B.; Dapkus, P. D. Twin-free GaAs nanosheets by selective area growth: Implications for defect-free nanostructures. Nano Lett. 2013, 13, 2506–2515.CrossRefGoogle Scholar
  18. [18]
    Yuan, Z. S.; Nomura, K.; Nakano, A. A core/shell mechanism for stacking-fault generation in GaAs nanowires. Appl. Phys. Lett. 2012, 100, 163103.CrossRefGoogle Scholar
  19. [19]
    Chu, H.J.; Yeh, T. W.; Stewart, L.; Dapkus, P. D. Wurtzite InP nanowire arrays grown by selective area MOCVD. Phys. Status Solidi C, 2010, 7, 2494.CrossRefGoogle Scholar
  20. [20]
    Chu, H.-J. The growth and characterization of III–V semiconductor nanowire arrays by nanoscale selective area metalorganic chemical vapor deposition. PhD Thesis. University of Southern California, Los Angeles, USA, 2010.Google Scholar
  21. [21]
    Perovic, D. D.; Castell, M. R.; Howie, A.; Lavoie, C.; Tiedje, T.; Cole, J. S. W. Field-emission SEM imaging of compositional and doping layer semiconductor superlattices. Ultramicroscopy, 1995, 58, 104–113.CrossRefGoogle Scholar
  22. [22]
    Turan, R.; Perovic, D. D.; Houghton, D. C. Mapping electrically active dopant profiles by field-emission scanning electron microscopy. Appl. Phys. Lett. 1996, 69, 1593–1595.CrossRefGoogle Scholar
  23. [23]
    Elliott, S. L.; Broom, R. F.; Humphreys, C. J. Dopant profiling with the scanning electron microscope—A study of Si. J. Appl. Phys. 2002, 91, 9116–9122.CrossRefGoogle Scholar
  24. [24]
    Schönjahn, C.; Broom, R. F.; Humphreys, C. J.; Howie, A.; Mentink, S. A. M. Optimizing and quantifying dopant mapping using a scanning electron microscope with a through-the-lens detector. Appl. Phys. Lett. 2003, 83, 293–295.CrossRefGoogle Scholar
  25. [25]
    Li, J.; He, Y.; Han, Y.; Liu, K.; Wang, J.; Li, Q.; Fan, S.; Jiang, K. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095–4101.CrossRefGoogle Scholar
  26. [26]
    Wang, W. I.; Mendez, E. E.; Kuan, T. S.; Esaki, L. Crystal orientation dependence of silicon doping in molecular-beam epitaxy AlGaAs/GaAs heterostructures. Appl. Phys. Lett. 1985, 47, 826–828.CrossRefGoogle Scholar
  27. [27]
    North, A.; Burroughes, J.; Burke, T.; Shields, A.; Norman, C. E.; Pepper, M. The two-dimensional lateral injection in-plane laser. IEEE J. Quantum Electron. 1999, 35, 352–357.CrossRefGoogle Scholar
  28. [28]
    Kuech, T. F.; Veuhoff, E. Mechanism of carbon incorporation in MOCVD GaAs. J. Cryst. Growth. 1984, 68, 148–156.CrossRefGoogle Scholar
  29. [29]
    De-Sheng, J.; Makita, Y.; Ploog, K.; Queisser, H. J. Electrical properties and photoluminescence of Te-doped GaAs grown by molecular beam epitaxy. J. Appl. Phys. 1982, 53, 999–1006.CrossRefGoogle Scholar
  30. [30]
    Szuber, J. Electronic properties and origin of surface states on GaAs(100) surfaces thermally cleaned in ultrahigh vacuum. Thin Solid Film 1983, 105, 33–37.CrossRefGoogle Scholar
  31. [31]
    Eastman, D. E.; Freeouf, J. L. Photoemission partial yield measurements of unoccupied intrinsic surface states for Ge(111) and GaAs(110). Phys. Rev. Lett. 1974, 33, 1601–1605.CrossRefGoogle Scholar
  32. [32]
    Ludeke, R.; Esaki, L. Electron energy-loss spectroscopy of GaAs and Ge surfaces. Phys. Rev. Lett. 1974, 33, 653–656.CrossRefGoogle Scholar
  33. [33]
    Dose, V.; Gossmann, H.-J.; Straub, D. Investigation of intrinsic unoccupied surface states at GaAs(110) by isochromat spectroscopy. Phys. Rev. Lett. 1981, 47, 608–610.CrossRefGoogle Scholar
  34. [34]
    Weber, E. R.; Ennen, H.; Kaufmann, U.; Windscheif, J.; Schneider, J.; Wosinski, T. Identification of AsGa antisites in plastically deformed AsGa. J. Appl. Phys. 1982, 53, 6140–6143.CrossRefGoogle Scholar
  35. [35]
    Choi, K. J.; Lee, J.-L. Determination of energy levels of surface states in GaAs metal—semiconductor field-effect transistor using deep-level transient spectroscopy. Appl. Phys. Lett. 1999, 74, 1108–1110.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chia-Chi Chang
    • 1
    • 2
  • Chun-Yung Chi
    • 2
    • 3
  • Chun-Chung Chen
    • 2
    • 3
  • Ningfeng Huang
    • 2
    • 3
  • Shermin Arab
    • 2
    • 3
  • Jing Qiu
    • 4
  • Michelle L. Povinelli
    • 2
    • 3
  • P. Daniel Dapkus
    • 2
    • 3
  • Stephen B. Cronin
    • 1
    • 2
    • 3
  1. 1.Department of PhysicsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Center for Energy NanoscienceUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations