Nano Research

, Volume 6, Issue 12, pp 929–937 | Cite as

Writing with atoms: Oxygen adatoms on the MoO2/Mo(110) surface

  • Sergey A. Krasnikov
  • Olaf Lübben
  • Barry E. Murphy
  • Sergey I. Bozhko
  • Alexander N. Chaika
  • Natalia N. Sergeeva
  • Brendan Bulfin
  • Igor V. Shvets
Research Article


Writing at the nanoscale using the desorption of oxygen adatoms from the oxygen-rich MoO2+x /Mo(110) surface is demonstrated by scanning tunnelling microscopy (STM). High-temperature oxidation of the Mo(110) surface results in a strained, bulk-like MoO2(010) ultra-thin film with an O-Mo-O trilayer structure. Due to the lattice mismatch between the Mo(110) and the MoO2(010), the latter consists of well-ordered molybdenum oxide nanorows separated by 2.5 nm. The MoO2(010)/Mo(110) structure is confirmed by STM data and density functional theory calculations. Further oxidation results in the oxygen-rich MoO2+x /Mo(110) surface, which exhibits perfectly aligned double rows of oxygen adatoms, imaged by STM as bright protrusions. These adatoms can be removed from the surface by scanning (or pulsing) at positive sample biases greater than 1.5 V. Tip movement along the surface can be used for controlled lithography (or writing) at the nanoscale, with a minimum feature size of just 3 nm. By moving the STM tip in a predetermined fashion, information can be written and read by applying specific biases between the surface and the tip.


scanning tunnelling microscopy inelastic tunnelling atom manipulation molybdenum oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface studies by scanning tunnelling microscopy. Phys. Rev. Lett. 1982, 49, 57–61.CrossRefADSGoogle Scholar
  2. [2]
    Ringger, M.; Hidber, H. R.; Schlögl, R.; Oelhafen, P.; Güntherodt, H. J. Nanometer lithography with the scanning tunnelling microscope. Appl. Phys. Lett. 1985, 46, 832.CrossRefADSGoogle Scholar
  3. [3]
    Staufer, U.; Wiesendanger, R.; Eng, L.; Rosenthaler, L.; Hidber, H. R.; Güntherodt, H. J.; Garcia, N. Nanometer scale structure fabrication with the scanning tunneling microscope. Appl. Phys. Lett. 1987, 51, 244.CrossRefADSGoogle Scholar
  4. [4]
    Eigler, D. M.; Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 1990, 344, 524–526.CrossRefADSGoogle Scholar
  5. [5]
    Stroscio, J. A.; Eigler, D. M. Atomic and molecular manipulation with the scanning tunneling microscope. Science 1991, 254, 1319–1326.PubMedCrossRefADSGoogle Scholar
  6. [6]
    Zeppenfeld, P.; Lutz, C. P.; Eigler, D. M. Manipulating atoms and molecules with a scanning tunneling microscope. Ultramicroscopy 1992, 42, 128–133.CrossRefGoogle Scholar
  7. [7]
    Walsh, M. A.; Hersam, M. C. Atomic-scale templates patterned by ultrahigh vacuum scanning tunnelling microscopy on silicon. Annu. Rev. Phys. Chem. 2009, 60, 193–216.PubMedCrossRefADSGoogle Scholar
  8. [8]
    Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 1993, 262, 218–220.PubMedCrossRefADSGoogle Scholar
  9. [9]
    Pires, D.; Hedrick, J. L.; De Silva, A.; Frommer, J.; Gotsmann, B.; Wolf, H.; Despont, M.; Duerig, U.; Knoll, A. W. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 2010, 328, 732–735.PubMedCrossRefADSGoogle Scholar
  10. [10]
    Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S. Y.; Hu, Y.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373–1376.PubMedCrossRefADSGoogle Scholar
  11. [11]
    Sugimura, H.; Kitamura, N.; Masuhara, H. Modification of n-Si(100) surface by scanning tunnelling microscope tip-induced anodization under nitrogen atmosphere. Jpn. J. Appl. Phys. 1994, 33, L143–L145.CrossRefADSGoogle Scholar
  12. [12]
    Mühl, T.; Brückl, H.; Weise, G.; Reiss, G. Nanometer-scale lithography in thin carbon layers using electric field assisted scanning force microscopy. J. Appl. Phys. 1997, 82, 5255.CrossRefADSGoogle Scholar
  13. [13]
    Kolb, D. M.; Ullmann, R.; Will, T. Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunnelling microscope. Science 1997, 275, 1097–1099.PubMedCrossRefGoogle Scholar
  14. [14]
    Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. “Dip-Pen” nanolithography. Science 1999, 283, 661–663.PubMedCrossRefGoogle Scholar
  15. [15]
    Sugimura, H.; Nakagiri, N. Chemical approach to nanofabrication: Modifications of silicon surfaces patterned by scanning probe anodization. Jpn. J. Appl. Phys. 1995, 34, 3406–3411.CrossRefADSGoogle Scholar
  16. [16]
    Sakurai, M.; Thirstrup, C.; Aono, M. Nanoscale growth of silver on prepatterned hydrogen-terminated Si(001) surfaces. Phys. Rev. B 2000, 62, 16167–16174.CrossRefADSGoogle Scholar
  17. [17]
    Wei, Y. M.; Zhou, X. S.; Wang, J. G.; Tang, J.; Mao, B. W.; Kolb, D. M. The creation of nanostructures on an Au(111) electrode by tip-induced iron deposition from an ionic liquid. Small 2008, 4, 1355–1358.PubMedCrossRefGoogle Scholar
  18. [18]
    Hallam, T.; Reusch, T. C. G.; Oberbeck, L.; Curson, N. J.; Simmons, M. Y. Scanning tunneling microscope based fabrication of nano- and atomic scale dopant devices in silicon: The crucial step of hydrogen removal. J. Appl. Phys. 2007, 101, 034305.CrossRefADSGoogle Scholar
  19. [19]
    Cen, C.; Thiel, S.; Mannhart, J.; Levy, J. Oxide nanoelectronics on demand. Science 2009, 323, 1026–1030.PubMedCrossRefADSGoogle Scholar
  20. [20]
    Hartwich, J.; Dreeskornfeld, L.; Heisig, V.; Rahn, S.; Wehmeyer, O.; Kleineberg, U.; Heinzmann, U. STM writing of artificial nanostructures in ultrathin PMMA and SAM resists and subsequent pattern transfer in a Mo/Si multilayer by reactive ion etching. Appl. Phys. A 1998, 66, S685–S688.CrossRefADSGoogle Scholar
  21. [21]
    Krasnikov, S. A.; Murphy, S.; Berdunov, N.; McCoy, A. P.; Radican, K.; Shvets, I. V. Self-limited growth of triangular PtO2 nanoclusters on the Pt(111) surface. Nanotechnology 2010, 21, 335301.PubMedCrossRefADSGoogle Scholar
  22. [22]
    Krasnikov, S. A.; Bozhko, S. I.; Radican, K.; Lübben, O.; Murphy, B. E.; Vadapoo, S. R.; Wu, H. C.; Abid, M.; Semenov, V. N.; Shvets, I. V. Self-assembly and ordering of C60 on the WO2/W(110) surface. Nano Res. 2011, 4, 194–203.CrossRefGoogle Scholar
  23. [23]
    Laursen, S.; Linic, S. Oxidation catalysis by oxide-supported Au nanostructures: The role of supports and the effect of external conditions. Phys. Rev. Lett. 2006, 97, 026101.PubMedCrossRefADSGoogle Scholar
  24. [24]
    Santra, A. K.; Goodman, D. W. Oxide-supported metal clusters: Models for heterogeneous catalysts. J. Phys. Condens. Matter 2003, 15, R31–R62.CrossRefADSGoogle Scholar
  25. [25]
    Chaika, A. N.; Nazin, S. S.; Semenov, V. N.; Bozhko, S. I.; Lübben, O.; Krasnikov, S. A.; Radican, K.; Shvets, I. V. Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-Ångström lateral resolution. EPL 2010, 92, 46003.CrossRefADSGoogle Scholar
  26. [26]
    Chaika, A. N.; Nazin, S. S.; Semenov, V. N.; Orlova, N. N.; Bozhko, S. I.; Lübben, O.; Krasnikov, S. A.; Radican, K.; Shvets, I. V. High resolution STM imaging with oriented single crystalline tips. Appl. Surf. Sci. 2013, 267, 219–223.CrossRefADSGoogle Scholar
  27. [27]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefADSGoogle Scholar
  28. [28]
    Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569.CrossRefADSGoogle Scholar
  29. [29]
    Radican, K.; Berdunov, N.; Manai, G.; Shvets, I. V. Epitaxial molybdenum oxide grown on Mo(110): LEED, STM, and density functional theory calculations. Phys. Rev. B 2007, 75, 155434.CrossRefADSGoogle Scholar
  30. [30]
    Radican, K.; Berdunov, N.; Shvets, I. V. Studies of the periodic faceting of epitaxial molybdenum oxide grown on Mo(110). Phys. Rev. B 2008, 77, 085417.CrossRefADSGoogle Scholar
  31. [31]
    Lübben, O.; Krasnikov, S. A.; Preobrajenski, A. B.; Murphy, B. E.; Bozhko, S. I.; Arrora, S. K.; Shvets, I. V. Self-assembly of Fe nanocluster arrays on templated surfaces. J. Appl. Phys. 2012, 111, 07B515.Google Scholar
  32. [32]
    Shen, T. C.; Wang, C.; Abeln, G. C.; Tucker, J. R.; Lyding, J. W.; Avouris, Ph.; Walkup, R. E. Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 1995, 268, 1590–1592.PubMedCrossRefADSGoogle Scholar
  33. [33]
    Stipe, B. C.; Rezaei, M. A.; Ho, W.; Gao, S.; Persson, M.; Lundqvist, B. I. Single-molecule dissociation by tunneling electrons. Phys. Rev. Lett. 1997, 78, 4410–4413.CrossRefADSGoogle Scholar
  34. [34]
    Stroscio, J. A.; Celotta, R. J. Controlling the dynamics of a single atom in lateral atom manipulation. Science 2004, 306, 242–247.PubMedCrossRefADSGoogle Scholar
  35. [35]
    Bozhko, S. I.; Krasnikov, S. A.; Lübben, O.; Murphy, B. E.; Radican, K.; Semenov, V. N.; Wu, H. C.; Levchenko, E. A.; Chaika, A. N.; Sergeeva, N. N. et al. Correlation between charge-transfer and rotation of C60 on WO2/W(110). Nanoscale 2013, 5, 3380–3386.PubMedCrossRefADSGoogle Scholar
  36. [36]
    Repp, J.; Meyer, G.; Olsson, F. E.; Persson, M. Controlling the charge state of individual gold adatoms. Science 2004, 305, 493–495.PubMedCrossRefADSGoogle Scholar
  37. [37]
    Gadzuk, J. W. Resonance-assisted, hot-electron-induced desorption. Surf. Sci. 1995, 342, 345–358.CrossRefADSGoogle Scholar
  38. [38]
    Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600–603.CrossRefADSGoogle Scholar
  39. [39]
    Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.PubMedCrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sergey A. Krasnikov
    • 1
  • Olaf Lübben
    • 1
  • Barry E. Murphy
    • 1
  • Sergey I. Bozhko
    • 1
    • 2
  • Alexander N. Chaika
    • 1
    • 2
  • Natalia N. Sergeeva
    • 3
  • Brendan Bulfin
    • 1
  • Igor V. Shvets
    • 1
  1. 1.Centre for Research on Adaptive Nanostructures and Nanodevices, School of PhysicsTrinity College DublinDublin 2Ireland
  2. 2.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow DistrictRussia
  3. 3.School of ChemistryUniversity of LeedsLeedsUK

Personalised recommendations