Nano Research

, Volume 6, Issue 12, pp 880–886 | Cite as

Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator

  • Weiqing Yang
  • Jun Chen
  • Guang Zhu
  • Xiaonan Wen
  • Peng Bai
  • Yuanjie Su
  • Yuan Lin
  • Zhonglin Wang
Research Article

Abstract

Triboelectric nanogenerators (TENG), a unique technology for harvesting ambient mechanical energy based on triboelectric effect, have been proven to be a cost-effective, simple and robust approach for self-powered systems. Here, we demonstrate a rationally designed triple-cantilever based TENG for harvesting vibration energy. With the assistance of nanowire arrays fabricated onto the surfaces of beryllium-copper alloy foils, the newly designed TENG produces an open-circuit voltage up to 101 V and a short-circuit current of 55.7 μA with a peak power density of 252.3 mW/m2. The TENG was systematically investigated and demonstrated as a direct power source for instantaneously lighting up 40 commercial light-emitting diodes. For the first time, a TENG device has been designed for harvesting vibration energy, especially at low frequencies, opening its application as a new energy technology.

Keywords

triboelectric nanogenerator harvesting vibration energy triple-cantilever self-powered systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_364_MOESM1_ESM.pdf (595 kb)
Supplementary material, approximately 399 KB.

References

  1. [1]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.PubMedCrossRefADSGoogle Scholar
  2. [2]
    Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.PubMedCrossRefADSGoogle Scholar
  3. [3]
    Zhang, J.; Wu, Z.; Jia, Y. M.; Kan, J. W.; Cheng, G. M. Piezoelectric bimorph cantilever for vibration-producing-hydrogen. Sensors 2013, 13, 367–374.CrossRefPubMedCentralGoogle Scholar
  4. [4]
    Park, K. I.; Jeong, C. K.; Ryu, J.; Hwang, G. T.; Lee, K. J. Flexible and large-area nanocomposite generator based on lead zirconate titanate particles and carbon nanotubes. Adv. Eng. Mater., in press, DOI: 10.1002/aenm.201300458.Google Scholar
  5. [5]
    Bai, X. L.; Wen, Y. M.; Yang, J.; Li, P.; Qiu, J.; Zhu, Y. A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys. 2012, 111, 07A938.Google Scholar
  6. [6]
    Mitcheson, P. D.; Miao, P.; Stark, B. H.; Yeatman, E. M.; Holmes, A. S.; Green, T. C. MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 2004, 115, 523–529.CrossRefGoogle Scholar
  7. [7]
    Wang, L.; Yuan, F. G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009.CrossRefADSGoogle Scholar
  8. [8]
    Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2011, 24, 279–284.CrossRefMATHGoogle Scholar
  9. [9]
    Wang, Z. L. Self-powering nanotech. Sci. Am. 2008, 298, 82–87.PubMedCrossRefADSGoogle Scholar
  10. [10]
    Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334.CrossRefGoogle Scholar
  11. [11]
    Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3144.PubMedCrossRefGoogle Scholar
  12. [12]
    Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.PubMedCrossRefADSGoogle Scholar
  13. [13]
    Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.PubMedCrossRefADSGoogle Scholar
  14. [14]
    Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.PubMedCrossRefADSGoogle Scholar
  15. [15]
    Bai, P.; Zhu, G.; Lin, Z. H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719.PubMedCrossRefGoogle Scholar
  16. [16]
    Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.PubMedCrossRefADSGoogle Scholar
  17. [17]
    Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.PubMedCrossRefADSGoogle Scholar
  18. [18]
    Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.PubMedCrossRefADSGoogle Scholar
  19. [19]
    Lowell, J.; Rose-Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947–1023.CrossRefADSGoogle Scholar
  20. [20]
    Castle, G. S. P. Industrial applications of electrostatics: The past, present and future. J. Electrost. 2001, 51-52, 1–7.CrossRefGoogle Scholar
  21. [21]
    Yang, X. H.; Zhu, G.; Wang, S. H.; Zhang, R.; Lin, L.; Wu, W. Z.; Wang, Z. L. A self-powered electrochromic device driven by a nanogenerator. Energy Environ. Sci. 2012, 5, 9462–9466.CrossRefGoogle Scholar
  22. [22]
    Zhong, J. W.; Zhong, Q. Z.; Fan, F. R.; Zhang, Y.; Wang, S. H.; Hu, B.; Wang, Z. L.; Zhou, J. Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy 2013, 4, 491–497.CrossRefGoogle Scholar
  23. [23]
    Horn, R. G.; Smith, D. T. Contact electrification and adhesion between dissimilar materials. Science 1992, 256, 362–364.PubMedCrossRefADSGoogle Scholar
  24. [24]
    Sessler, G. M. Topics in Applied Physcs: Electrets; Spring-Verlag Berlin Heidelberg: New York, 1980.Google Scholar
  25. [25]
    Horn, R. G.; Smith, D. T.; Grabbe, A. Contact electrification induced by monolayer modification of a surface and relation to acid base interactions. Nature 1993, 366, 442–443.CrossRefADSGoogle Scholar
  26. [26]
    Baytekin, H. T.; Patashinski, A. Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B. A. The mosaic of surface charge in contact electrification. Science 2011, 333, 308–312.PubMedCrossRefADSGoogle Scholar
  27. [27]
    Soh, S.; Kwok, S. W.; Liu, H.; Whitesides, G. M. Contact de-electrification of electrostatically charged polymers. J. Am. Chem. Soc. 2012, 134, 20151–20159.PubMedCrossRefGoogle Scholar
  28. [28]
    Hu, Y. F.; Zhang, Y.; Xu, C.; Lin, L.; Snyder, R. L.; Wang, Z. L. Self-powered system with wireless data transmission. Nano Lett. 2011, 11, 2572–2577.PubMedCrossRefADSGoogle Scholar
  29. [29]
    Cross, J. A. Electrostatics: Principles, problems and applications. In Adam Hilger: Bristol 1987, Chapter 2.Google Scholar
  30. [30]
    Németh, E.; Albrecht, V.; Schulert, G.; Simon, F. Polymer tribo-electric charging: Dependence on thermodynamic surface properties and relative humidity. J. Electrost. 2003, 58, 3–16.CrossRefGoogle Scholar
  31. [31]
    Qin, Y.; Wang, X. D.; Wang, Z. L. Microfiber-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.PubMedCrossRefADSGoogle Scholar
  32. [32]
    Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally-packaged piezoelectric fine wires. Nat. Nanotech. 2008, 4, 34–39.CrossRefADSGoogle Scholar
  33. [33]
    Graff, K. F. Wave Motion in Elestic Solids; Dover: New York, 1991.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Weiqing Yang
    • 1
    • 2
  • Jun Chen
    • 1
  • Guang Zhu
    • 1
  • Xiaonan Wen
    • 1
  • Peng Bai
    • 1
  • Yuanjie Su
    • 1
    • 2
  • Yuan Lin
    • 2
  • Zhonglin Wang
    • 1
    • 3
  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.State Key Laboratory of Electronic Thin films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina

Personalised recommendations