Nano Research

, Volume 6, Issue 10, pp 736–744 | Cite as

Evidence for structural phase transitions and large effective band gaps in quasi-metallic ultra-clean suspended carbon nanotubes

  • Shun-Wen Chang
  • Rohan Dhall
  • Moh Amer
  • Kentaro Sato
  • Riichiro Saito
  • Stephen Cronin
Research Article

Abstract

We report evidence for a structural phase transition in individual suspended metallic carbon nanotubes by examining their Raman spectra and electron transport under electrostatic gate potentials. The current-gate voltage characteristics reveal anomalously large quasi-metallic band gaps as high as 240 meV, the largest reported to date. For nanotubes with band gaps larger than 200 meV, we observe a pronounced M-shape profile in the gate dependence of the 2D band (or G’ band) Raman frequency. The pronounced dip (or softening) of the phonon mode near zero gate voltage can be attributed to a structural phase transition (SPT) that occurs at the charge neutrality point (CNP). The 2D band Raman intensity also changes abruptly near the CNP, providing further evidence for a change in the lattice symmetry and a possible SPT. Pronounced non-adiabatic effects are observed in the gate dependence of the G band Raman mode, however, this behavior deviates from non-adiabatic theory near the CNP. For nanotubes with band gaps larger than 200 meV, non-adiabatic effects should be largely suppressed, which is not observed experimentally. This data suggests that these large effective band gaps are primarily caused by a SPT to an insulating state, which causes the large modulation observed in the conductance around the CNP. Possible mechanisms for this SPT are discussed, including electron-electron (e.g., Mott) and electron-phonon (e.g., Peierls) driven transitions.

Keywords

carbon nanotube Raman spectroscopy phase transition bandgap energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cao, J. E.; Wang, Q.; Dai, H. J. Electron transport in very clean, as-grown suspended carbon nanotubes. Nat. Mater. 2005, 4, 745–749.CrossRefGoogle Scholar
  2. [2]
    Bushmaker, A. W.; Deshpande, V. V.; Bockrath, M. W.; Cronin, S. B. Direct observation of mode selective electron? phonon coupling in suspended carbon nanotubes. Nano Lett. 2007, 7, 3618–3622.CrossRefGoogle Scholar
  3. [3]
    Dhall, R.; Chang, S.-W.; Liu, Z. W.; Cronin, S. B. Pronounced electron-phonon interactions in ultraclean suspended carbon nanotubes. Phys. Rev. B 2012, 86, 045427.CrossRefGoogle Scholar
  4. [4]
    Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Direct observation of Born-Oppenheimer approximation breakdown in carbon nanotubes. Nano Lett. 2009. 9, 607–611.CrossRefGoogle Scholar
  5. [5]
    Deshpande, V. V.; Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nat. Phys. 2008, 4, 314–318.CrossRefGoogle Scholar
  6. [6]
    Deshpande, V. V.; Chandra, B.; Caldwell, R.; Novikov, D. S.; Hone, J.; Bockrath, M. Mott insulating state in ultraclean carbon nanotubes. Science 2009, 323, 106–110.CrossRefGoogle Scholar
  7. [7]
    Amer, M. R.; Bushmaker, A.; Cronin, S. B. The influence of substrate in determining the band gap of metallic carbon nanotubes. Nano Lett. 2012, 12, 4843–4847.CrossRefGoogle Scholar
  8. [8]
    Cronin, S. B.; Barnett, R.; Tinkham, M.; Chou, S. G.; Rabin, O.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B. Electrochemical gating of individual single-wall carbon nanotubes observed by electron transport measurements and resonant Raman spectroscopy. Appl. Phys. Lett. 2004, 84, 2052–2054.CrossRefGoogle Scholar
  9. [9]
    Das, A.; Sood, A. K.; Govindaraj, A.; Marco Saitta, A.; Lazzeri, M.; Mauri, F.; Rao, C. N. R. Doping in carbon nanotubes probed by Raman and transport measurements. Phys. Rev. Lett. 2007, 99, 136803.CrossRefGoogle Scholar
  10. [10]
    Tsang, J. C.; Freitag, M.; Perebeinos, V.; Liu, J.; Avouris, P. Doping and phonon renormalization in carbon nanotubes. Nat. Nanotechnol. 2007, 2, 725–730.CrossRefGoogle Scholar
  11. [11]
    Farhat, H.; Son, H.; Samsonidze, G. G.; Reich, S.; Dresselhaus, M. S.; Kong, J. Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly. Phys. Rev. Lett. 2007, 99, 145506.CrossRefGoogle Scholar
  12. [12]
    Sasaki, K.; Farhat, H.; Saito, R.; Dresselhaus, M. S. Kohn anomaly in Raman spectroscopy of single wall carbon nanotubes. Physica E 2010, 42, 2005–2015.CrossRefGoogle Scholar
  13. [13]
    Mott, N. F. Metal-insulator transition. Rev. Mod. Phys. 1968, 40, 677–683.CrossRefGoogle Scholar
  14. [14]
    Katsufuji, T.; Tokura, Y. Anomalous variation of phonon Raman intensities near the metal-to-Mott-insulator transition in titanium-oxide systems. Phys. Rev. B 1994, 50, 2704–2707.CrossRefGoogle Scholar
  15. [15]
    Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Large modulations in the intensity of Raman-scattered light from pristine carbon nanotubes. Phys. Rev. Lett. 2009, 103, 067401.CrossRefGoogle Scholar
  16. [16]
    Pop, E.; Mann, D.; Cao, J. E.; Wang, Q.; Goodson, K.; Dai, H. J. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 2005, 95, 155505.CrossRefGoogle Scholar
  17. [17]
    Jorio, A.; Pimenta, M.; Souza Filho, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. 2003, 5, 139.CrossRefGoogle Scholar
  18. [18]
    Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Gate voltage controllable non- equilibrium and non-ohmic behavior in suspended carbon nanotubes. Nano Lett. 2009, 9, 2862–2866.CrossRefGoogle Scholar
  19. [19]
    Zhao, Y.; Liao, A.; Pop, E. Multiband mobility in semiconducting carbon nanotubes. IEEE Electr. Device L. IEEE 2009, 30, 1078–1080.CrossRefGoogle Scholar
  20. [20]
    Bushmaker, A.; Chang, C.; Deshpande, V.; Amer, M.; Bockrath, M.; Cronin, S. Memristive behavior observed in a defected single-walled carbon nanotube. IEEE T. Nanotechnol. 2011, 10, 582–586.CrossRefGoogle Scholar
  21. [21]
    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.CrossRefGoogle Scholar
  22. [22]
    Caudal, N.; Saitta, A. M.; Lazzeri, M.; Mauri, F. Kohn anomalies and nonadiabaticity in doped carbon nanotubes. Phys. Rev. B 2007, 75, 115423.CrossRefGoogle Scholar
  23. [23]
    Piscanec, S.; Lazzeri, M.; Robertson, J.; Ferrari, A. C.; Mauri, F. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 2007, 75, 035427.CrossRefGoogle Scholar
  24. [24]
    Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S. Phonon self-energy corrections to nonzero wave-vector phonon modes in single-layer craphene. Phys. Rev. Lett. 2012, 109, 046801.CrossRefGoogle Scholar
  25. [25]
    Wu, Y.; Huang, M. Y.; Wang, F.; Huang, X. M. H.; Rosenblatt, S.; Huang, L. M.; Yan, H. G.; O’Brien, S. P.; Hone, J.; Heinz, T. F. Determination of the Young’s modulus of structurally defined carbon nanotubes. Nano Lett. 2008, 8, 4158–4161.CrossRefGoogle Scholar
  26. [26]
    Cronin, S. B.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single- wall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.CrossRefGoogle Scholar
  27. [27]
    Cronin, S. B.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single- wall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.CrossRefGoogle Scholar
  28. [28]
    Sapmaz, S.; Blanter, Y. M.; Gurevich, L.; Van der Zant, H. S. J. Carbon nanotubes as nanoelectromechanical systems. Phys. Rev. B 2003, 67, 235414.CrossRefGoogle Scholar
  29. [29]
    Ouyang, M.; Huang, J.-L.; Cheung, C. L.; Lieber, C. M. Energy gaps in “metallic” single-walled carbon nanotubes. Science 2001, 292, 702–705.CrossRefGoogle Scholar
  30. [30]
    Kane, C. L.; Mele, E. J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 1997, 78, 1932–1935.CrossRefGoogle Scholar
  31. [31]
    Cronin, S. B.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 2005, 72, 035425.CrossRefGoogle Scholar
  32. [32]
    Yang, L.; Anantram, M. P.; Han, J.; Lu, J. P. Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Phys. Rev. B 1999, 60, 13874–13878.CrossRefGoogle Scholar
  33. [33]
    Balents, L.; Fisher, M. P. A. Correlation effects in carbon nanotubes. Phys. Rev. B 1997, 55, R11973–R11976.CrossRefGoogle Scholar
  34. [34]
    Krotov, Y. A.; Lee, D.-H.; Louie, S. G. Low energy properties of (n, n) carbon nanotubes. Phys. Rev. Lett. 1997, 78, 4245–4248.CrossRefGoogle Scholar
  35. [35]
    Barnett, R.; Demler, E.; Kaxiras, E. Electron-phonon interaction in ultrasmall-radius carbon nanotubes. Phys. Rev. B 2005, 71, 035429.CrossRefGoogle Scholar
  36. [36]
    Connetable, D.; Rignanese, G. M.; Charlier, J. C.; Blase, X. Room temperature Peierls distortion in small diameter nanotubes. Phys. Rev. Lett. 2005, 94, 015503.CrossRefGoogle Scholar
  37. [37]
    Dumont, G.; Boulanger, P.; Côté, M.; Ernzerhof, M. Peierls instability in carbon nanotubes: A first-principles study. Phys. Rev. B 2010, 82, 035419.CrossRefGoogle Scholar
  38. [38]
    Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Electronic-structure of graphene tubules based on C-60. Phys. Rev. B 1992, 46, 1804–1811.CrossRefGoogle Scholar
  39. [39]
    Kim, H.-T.; Chae, B.-G.; Youn, D.-H.; Maeng, S.-L.; Kim, G.; Kang, K.-Y.; Lim, Y.-S. Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices. New J. Phys. 2004, 6, 52.CrossRefGoogle Scholar
  40. [40]
    Peierls, R. More Surprises in Theoretical Physics; Princeton University Press: Princeton, 1991.Google Scholar
  41. [41]
    Yin, L.-C.; Cheng, H.-M.; Saito, R.; Dresselhaus, M. S. Fermi level dependent optical transition energy in metallic single-walled carbon nanotubes. Carbon 2011, 49, 4774–4780.CrossRefGoogle Scholar
  42. [42]
    Vercosa, D. G.; Barros, E. B.; Souza Filho, A. G.; Mendes Filho, J.; Samsonidze, G. G.; Saito, R.; Dresselhaus, M. S. Torsional instability of chiral carbon nanotubes. Phys. Rev. B 2010, 81, 165430.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shun-Wen Chang
    • 1
  • Rohan Dhall
    • 2
  • Moh Amer
    • 2
  • Kentaro Sato
    • 4
  • Riichiro Saito
    • 4
  • Stephen Cronin
    • 1
    • 2
    • 3
  1. 1.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Department of PhysicsTohoku UniversitySendaiJapan

Personalised recommendations