Nano Research

, Volume 6, Issue 10, pp 726–735 | Cite as

Robust superhydrophobicity of hierarchical ZnO hollow microspheres fabricated by two-step self-assembly

Research Article

Abstract

Superhydrophobic and superhydrophilic surfaces have been extensively investigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive to heat, ultraviolet (UV) light, and electric potential, which interfere with their long-term durability. In this study, we introduce a novel approach to achieve robust superhydrophobic thin films by designing architecture-defined complex nanostructures. A family of ZnO hollow microspheres with controlled constituent architectures in the morphologies of 1D nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks, respectively, was synthesized via a two-step self-assembly approach, where the oligomers or the constituent nanostructures with specially designed structures are first formed from surfactant templates, and then further assembled into complex morphologies by the addition of a second co-surfactant. The thin films composed of two-step synthesized ZnO hollow microspheres with different architectures presented superhydrophobicities with contact angles of 150°–155°, superior to the contact angle of 103° for one-step synthesized ZnO hollow microspheres with smooth and solid surfaces. Moreover, the robust superhydrophobicity was further improved by perfluorinated silane surface modification. The perfluorinated silane treated ZnO hollow microsphere thin films maintained excellent hydrophobicity even after 75 h of UV irradiation. The realization of environmentally durable superhydrophobic surfaces provides a promising solution for their long-term service under UV or strong solar light irradiations.

Keywords

ZnO hierarchical structure two-step self-assembly nanomaterials robust superhydrophobicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Xia, Y. N; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, H. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  2. [2]
    Burda, C.; Chen, X. B.; Narayanan, R.; Ei-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.CrossRefGoogle Scholar
  3. [3]
    Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803.CrossRefGoogle Scholar
  4. [4]
    Wang, Q. H.; Kalntar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 2012, 7, 699–712.CrossRefGoogle Scholar
  5. [5]
    Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.CrossRefGoogle Scholar
  6. [6]
    Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Dou, S. X. Continually adjustable oriented 1D TiO2 nanostructure arrays with controlled growth of morphology and their application in dye-sensitized solar cells. CrystEngComm 2012, 14, 5472–5478.CrossRefGoogle Scholar
  7. [7]
    Pan, J. H.; Zhang, X. W.; Du, A. J.; Sun, D. D.; Leckie, J. O. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherial photocatalyst for concurrent membrane water purification. J. Am. Chem. Soc. 2008, 130, 11256–11257.CrossRefGoogle Scholar
  8. [8]
    Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Lee, Y.; Kang, Y. M.; Dou, S. X. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 2011, 133, 19314–19317.CrossRefGoogle Scholar
  9. [9]
    Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Attard, D.; Dou, S. X. Morphology-controllable 1D-3D nanostructured TiO2 bilayer photoanodes for dye-sensitized solar cells. Chem. Commun. 2013, 49, 966–968.CrossRefGoogle Scholar
  10. [10]
    Gao, X. F.; Jiang, L. Biophysics: Water-repellent legs of water striders. Nature 2004, 432, 36.CrossRefGoogle Scholar
  11. [11]
    Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.CrossRefGoogle Scholar
  12. [12]
    Liu, K. S.; Yao, X.; Jiang, L. Recent developments in bio-inspired special wettability. Chem. Soc. Rev. 2010, 39, 3240–3255.CrossRefGoogle Scholar
  13. [13]
    Lim, H. S.; Kwak, D.; Lee, D. Y.; Lee, S. G.; Cho, K. UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. J. Am. Chem. Soc. 2007, 129, 4128–4129.CrossRefGoogle Scholar
  14. [14]
    Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994.CrossRefGoogle Scholar
  15. [15]
    Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.CrossRefGoogle Scholar
  16. [16]
    Parker, A. R.; Lawrence, C. R. Water capture by a desert beetle. Nature 2001, 414, 33–34.CrossRefGoogle Scholar
  17. [17]
    Erbil, H. Y.; Demirel, A. L.; Avcı, Y.; Mert, O. Transformation of a simple plastic into a superhydrophobic surface. Science 2003, 299, 1377–1380.CrossRefGoogle Scholar
  18. [18]
    Roach, P.; Shirtcliffe, N. J.; Newton, M. I. Progess in superhydrophobic surface development. Soft Matter 2008, 4, 224–240.CrossRefGoogle Scholar
  19. [19]
    Li, X. M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350–1368.CrossRefGoogle Scholar
  20. [20]
    Drelich, J.; Chibowski, E. Superhydrophilic and superwetting surfaces: Definition and mechanisms of control. Langmuir 2010, 26, 18621–18623.CrossRefGoogle Scholar
  21. [21]
    Su, B.; Wang, S. T.; Song, Y.; Jiang, L. A miniature droplet built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 2011, 4, 266–273.CrossRefGoogle Scholar
  22. [22]
    Feng, L.; Zhang, Z. Y.; Mai, Z. H.; Ma, Y. M.; Liu, B. Q.; Jiang, L.; Zhu, D. B. A super-hydrophobic and superoleophilic coating mesh film for the separation of oil and water. Angew. Chem. Int. Ed. 2004, 43, 2012–2014.CrossRefGoogle Scholar
  23. [23]
    Nosonovsky, M.; Bhushan, B. Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering. Curr. Opin. Coll. Interf. Sci. 2009, 4, 270–280.CrossRefGoogle Scholar
  24. [24]
    Quick, D. New coating technology promises self-cleaning cars. http://www.gizmag.com/self-cleaning-coating/23409/ (accessed July 22, 2012).Google Scholar
  25. [25]
    Feng, X. J.; Feng, L.; Jin, M. H.; Jiang, L.; Zhu, D. B. Reversible superhydrophobicity to superhydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 2004, 126, 62–63.CrossRefGoogle Scholar
  26. [26]
    Xu, L. B.; Chen, W.; Mulchandani, A.; Yan, Y. Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew. Chem. Int. Ed. 2005, 44, 6009–6012.CrossRefGoogle Scholar
  27. [27]
    Sun, T. L.; Wang, G. J.; Feng, L.; Liu, B. Q.; Ma, Y. M.; Jiang, L.; Zhu, D. B. Reversible switching between superhydrophobicity and superhydrophilicity. Angew. Chem. Int. Ed. 2004, 43, 357–360.CrossRefGoogle Scholar
  28. [28]
    Liu, J.; Kim, A. Y.; Wang, L. Q.; Palmer, B. J.; Chen, Y. L.; Bruinsma, P.; Bunker, B. C.; Exarhos, G. J.; Graff, G. L.; Rieke, P. C. et al. Self-assembly in the synthesis of ceramic materials and composites. Adv. Coll. Interface Sci. 1996, 69, 131–180.CrossRefGoogle Scholar
  29. [29]
    McPeak, K. M.; Le, T. P.; Britton, N. G.; Nickolov, Z. S.; Elabd, Y. A.; Baxter, J. B. Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): Understanding the role of HMTA in ZnO nanowire growth. Langmuir 2011, 27, 3672–3677.CrossRefGoogle Scholar
  30. [30]
    Dong, R. H.; Hao, J. C. Complex fluids of poly(oxyethylene) monoalkyl ether nonionic surfactants. Chem. Rev. 2010, 110, 4978–5022.CrossRefGoogle Scholar
  31. [31]
    Liu, Y. X.; Wang, D. S.; Peng, Q.; Chu, D. R.; Liu, X. W.; Li, Y. D. Directly assembling ligand-free ZnO nanocrystals into three-dimensional mesoporous structures by oriented attachment. Inorg. Chem. 2011, 50, 5841–5847.CrossRefGoogle Scholar
  32. [32]
    Li, P.; Wang, D. S.; Wei, Z.; Peng, Q.; Li, Y. D. Systematic synthesis of ZnO nanostructures. Chem. Eur. J. 2013, 19, 3735–3740.CrossRefGoogle Scholar
  33. [33]
    Shi, J. X.; Liu, Y. X.; Peng, Q.; Li, Y. D. ZnO hierarchical aggregates: Solvothermal synthesis and application in dye-sensitized solar cells. Nano Res. 2013, 6, 441–448.CrossRefGoogle Scholar
  34. [34]
    Montalvo, G.; Rodenas, E.; Valiente, M. Phase and rheological behavior of the dodecyl tetraethylene glycol/benzyl alcohol/water system at low surfactant and alcohol concentrations. J. Coll. Interf. Sci. 1998, 202, 232–237.CrossRefGoogle Scholar
  35. [35]
    Zana, R. Aqueous surfactant-alcohol systems: A review. Adv. Coll. Interf. Sci. 1995, 57, 1–64.CrossRefGoogle Scholar
  36. [36]
    Ruthstein, S.; Schmidt, J.; Kesselman, E.; Talmon, Y.; Goldfarb, D. Resolving intermediate solution structures during the formation of mesoporous SBA-15. J. Am. Chem. Soc. 2006, 128, 3366–3374.CrossRefGoogle Scholar
  37. [37]
    Wan, Y.; Zhao, D. Y. On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 2007, 107, 2821–2860.CrossRefGoogle Scholar
  38. [38]
    Vilčnik, A.; Jerman, I.; Vuk, A. Š.; Koželj, M.; Orel, B.; Tomšič, B.; Simončič, B.; Kovač, J. Structural properties and antibacterial effects of hydrophobic and oleophobic sol-gel coatings for cotton fabrics. Langmuir 2009, 25, 5869–5880.CrossRefGoogle Scholar
  39. [39]
    Yin, H. E.; Huang, F. H.; Chiu, W. Y. Hydrophobic and flexible conductive films consisting of PEDOT: PSS-PBA/fluorine-modified silica and their performance in weather stability. J. Mater. Chem. 2012, 22, 14042–14051.CrossRefGoogle Scholar
  40. [40]
    Pielichowski, K.; Njuguna, J. Thermal Degradation of Polymeric Materials. Rapra Technology Ltd: Shropshire, 2005.Google Scholar
  41. [41]
    Babek, J. F. Photosensitized degradation of polymers. In Ultraviolet Light Induced Reactions in Polymers. Labana, S. S. Ed.; American Chemical Society, 1976; pp 255–271.Google Scholar
  42. [42]
    Wang, H. X.; Xue, Y. H.; Ding, J.; Feng, L. F.; Wang, X. G.; Lin, T. Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew. Chem. Int. Ed. 2011, 50, 11433–11436.CrossRefGoogle Scholar
  43. [43]
    Rehman, S.; Butt, R. A. M.; Gohar, N. D. Strategies of making TiO2 and ZnO visible ligth active. J. Hazard. Mater. 2009, 170, 560–569.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Superconducting and Electronic MaterialsUniversity of WollongongNorth WollongongAustralia
  2. 2.Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaAustralia
  3. 3.Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and EnvironmentBeijing University of Aeronautics & AstronauticsBeijingChina
  4. 4.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations