Nano Research

, Volume 6, Issue 6, pp 429–440 | Cite as

Durable, superhydrophobic, antireflection, and low haze glass surfaces using scalable metal dewetting nanostructuring

  • Daniel Infante
  • Karl W. Koch
  • Prantik Mazumder
  • Lili Tian
  • Albert Carrilero
  • Domenico Tulli
  • David Baker
  • Valerio Pruneri
Research Article

Abstract

In this paper we report a multifunctional nanostructured surface on glass that, for the first time, combines a wide range of optical, wetting and durability properties, including low omnidirectional reflectivity, low haze, high transmission, superhydrophobicity, oleophobicity, and high mechanical resistance. Nanostructures have been fabricated on a glass surface by reactive ion etching through a nanomask, which is formed by dewetting ultrathin metal films (< 10 nm thickness) subjected to rapid thermal annealing (RTA). The nanostructures strongly reduce the initial surface reflectivity (∼4%), to less than 0.4% in the 390–800 nm wavelength range while keeping the haze at low values (< 0.9%). The corresponding water contact angle (θc) is ∼24.5°, while that on a flat surface is ∼43.5°. The hydrophilic wetting nanostructure can be changed into a superhydrophobic and oleophobic surface by applying a fluorosilane coating, which achieves contact angles for water and oil of ∼156.3° and ∼116.2°, respectively. The multicomponent composition of the substrate (Corning® glass) enables ion exchange through the surface, so that the nanopillars’ mechanical robustness increases, as is demonstrated by the negligible changes in surface morphology and optical performance after 5,000-run wipe test. The geometry of the nanoparticles forming the nanomask depends on the metal material, initial metal thickness and RTA parameters. In particular we show that by simply changing the initial thickness of continuous Cu films we can tailor the metal nanoparticles’ surface density and size. The developed surface nanostructuring does not require expensive lithography, thus it can be controlled and implemented on an industrial scale, which is crucial for applications.

Keywords

nanostructures surface modification antireflective superhydrophobic/philic surfaces self-assembly dewetting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_320_MOESM1_ESM.pdf (1015 kb)
Supplementary material, approximately 0.99 MB.

References

  1. [1]
    Varghese, O. K.; Paulose, M.; Grimes, C. A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 2009, 4, 592–597.CrossRefGoogle Scholar
  2. [2]
    Formica, N.; Ghosh, D. S.; Chen, T. L.; Eickhoff, C.; Bruder, I.; Pruneri, V. Highly stable Ag-Ni based transparent electrodes on pet substrates for flexible organic solar cells. Sol. Energ. Mat. Sol. C 2012, 107, 63–68.CrossRefGoogle Scholar
  3. [3]
    Görrn, P.; Sander, M.; Meyer, J.; Kröger, M.; Becker, E.; Johannes, H. H.; Kowalsky, W.; Riedl, T. Towards see-through displays: Fully transparent thin-film transistors driving transparent organic light-emitting diodes. Adv. Mater. 2006, 18, 738–741.CrossRefGoogle Scholar
  4. [4]
    Ren, H. W.; Fox, D. W.; Wu, B.; Wu, S. T. Liquid crystal lens with large focal length tunability and low operating voltage. Opt. Express 2007, 15, 11328–11335.CrossRefGoogle Scholar
  5. [5]
    Cheylan, S.; Ghosh, D. S.; Krautz, D.; Chen, T. L.; Pruneri, V. Organic light-emitting diode with indium-free metallic bilayer as transparent anode. Org. Electron. 2011, 12, 818–822.CrossRefGoogle Scholar
  6. [6]
    Li, Y. F.; Li, F.; Zhang, J. H.; Wang, C. L.; Zhu, S. J.; Yu, H. J.; Wang, Z. H.; Yang, B. Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces. Appl. Phys. Lett. 2010, 96, 153305.CrossRefGoogle Scholar
  7. [7]
    Tulli, D.; Janner, D.; Garcia-Granda, M.; Ricken, R.; Pruneri, V. Electrode-free optical sensor for high voltage using a domain-inverted lithium niobate waveguide near cut-off. Appl. Phys. B 2011, 103, 399–403.CrossRefGoogle Scholar
  8. [8]
    Dannberg, P.; Erdmann, L.; Bierbaum, R.; Krehl, A.; Bräuer, A.; Kley, E. B. Micro-optical elements and their integration to glass and optoelectronic wafers. Microsyst. Technol. 1999, 6, 41–47.CrossRefGoogle Scholar
  9. [9]
    Hecht, E. Interference. In Optics, 4th ed. Addison-Wesley: San Francisco, 2001; pp 428–431.Google Scholar
  10. [10]
    Lalanne, P.; Morris, G. M. Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain. SPIE 1996, 2776, 300–309.CrossRefGoogle Scholar
  11. [11]
    Guenther, K. H. Physical and chemical aspects in the application of thin films on optical elements. Appl. Optics 1984, 23, 3612–3632.CrossRefGoogle Scholar
  12. [12]
    Parker, A. R.; Townley, H. E. Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2007, 2, 347–353.CrossRefGoogle Scholar
  13. [13]
    Chen, J. Y.; Chang, W. L.; Huang, C. K.; Sun, K. W. Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells. Opt. Express 2011, 15, 14411–14419.CrossRefGoogle Scholar
  14. [14]
    Gombert, A.; Glaubitt, W.; Rose, K.; Dreibholz, J.; Bläsi, B.; Heinzel, A.; Sporn, D.; Döll, W.; Wittwer, V. Subwavelength-structured antireflective surfaces on glass. Thin Solid Films 1999, 351, 73–78.CrossRefGoogle Scholar
  15. [15]
    Min, W. L.; Jiang, B.; Jiang, P. Bioinspired self-cleaning antireflection coatings. Adv. Mater. 2008, 20, 3914–3918.CrossRefGoogle Scholar
  16. [16]
    Li, Y. F.; Zhang, J. H.; Zhu, S. J.; Dong, H. P.; Jia, F.; Wang, Z. H.; Sun, Z. Q.; Zhang, L.; Li, Y.; Li, H. B.; Xu, W. Q.; Yang, B. Biomimetic surfaces for high-performance optics. Adv. Mater. 2009, 21, 4731–4734.Google Scholar
  17. [17]
    Zhu, J.; Hsu, C. M.; Yu, Z. F.; Fan, S. H.; Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 2010, 10, 1979–1984.CrossRefGoogle Scholar
  18. [18]
    Leem, J. W.; Yeh, Y.; Yu, J. S. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. Opt. Express 2012, 20, 4056–4066.CrossRefGoogle Scholar
  19. [19]
    Lohmüller, T.; Helgert, M.; Sundermann, M.; Brunner, R.; Spatz, J. P. Biomimetic interfaces for high-performance optics in the deep-UV light range. Nano Lett. 2008, 8, 1429–1433.CrossRefGoogle Scholar
  20. [20]
    Morhard, C.; Pacholski, C.; Brunner, R.; Helgert, M.; Lehr, D.; Spatz, J. Antireflective “moth-eye” structures fabricated by a cheap and versatile process on various optical elements. IEEE-NANO 2011, 116–121.Google Scholar
  21. [21]
    Hein, E.; Fox, D.; Fouckhardt, H. Lithography-free glass surface modification by self-masking during dry etching. J. Nanophotonics 2011, 5, 051703.CrossRefGoogle Scholar
  22. [22]
    Bessonov, A.; Kim, J. G.; Seo, J. W.; Lee, J. W.; Lee, S. Design of patterned surfaces with selective wetting using nanoimprint lithography. Macromol. Chem. Phys. 2010, 211, 2636–2641.CrossRefGoogle Scholar
  23. [23]
    Schulze, M.; Fuchs, H. J.; Kley, E. B.; Tünnermann, A. New approach for antireflective fused silica surfaces by statistical nanostructures. SPIE 2008, 6883, 68830N.CrossRefGoogle Scholar
  24. [24]
    Camargo, K. C.; Michels, A. F.; Rodembusch, F. S.; Horowitz, F. Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region. Chem. Commun. 2012, 48, 4992–4994.CrossRefGoogle Scholar
  25. [25]
    MacLeod, B. D.; Hobbs, D. S. Low-cost anti-reflection technology for automobile displays. In SID Vehicle Display conference, Canton, USA, 2004.Google Scholar
  26. [26]
    Park, K. C.; Choi, H. J.; Chang, C. H.; Cohen, R. E.; McKinleyand, G. H.; Barbastathis, G. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity. ACS Nano 2012, 6, 3789–3799.CrossRefGoogle Scholar
  27. [27]
    Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99.CrossRefGoogle Scholar
  28. [28]
    Ganesh, V. A.; Raut, H. K.; Nair, A. S.; Ramakrishna, S. A review on self-cleaning coatings. J. Mater. Chem. 2011, 21, 16304–16322.CrossRefGoogle Scholar
  29. [29]
    Hobbs, D. S.; MacLeod, B. D.; Kelsey, A. F.; Leclerc, M. A.; Sabatino III, E.; Resler, D. P. Automated interference lithography systems for generation of sub-micron feature size patterns. SPIE 1999, 3879, 124–135.CrossRefGoogle Scholar
  30. [30]
    Chang, Y. M.; Shieh, J.; Juang, J. Y. Subwavelength antireflective Si nanostructures fabricated by using the self-assembled silver metal-nanomask. J. Phys. Chem. C 2011, 115, 8983–8987.CrossRefGoogle Scholar
  31. [31]
    Lee, Y.; Koh, K.; Na, H.; Kim, K.; Kang, J. J.; Kim, J. Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask. Nanoscale Res. Lett. 2009, 4, 364–370.CrossRefGoogle Scholar
  32. [32]
    Dow Corning® 2634 Coating Product Information Datasheet [Online]. http://www2.dowcorning.com/DataFiles/090007c880276ab9.pdf (accessed Apr 2, 2013)
  33. [33]
    Mochel, E. L. Mechanical strengthening of glass by ion exchange. U.S. Patent 3,485,702, Dec. 23, 1969.Google Scholar
  34. [34]
    Gentili, D.; Foschi, G.; Valle, F.; Cavallini, M.; Biscarini, F. Applications of dewetting in micro and nanotechnology. Chem. Soc. Rev. 2012, 41, 4430–4443.CrossRefGoogle Scholar
  35. [35]
    Taflove, A.; Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method; Artech House: Boston, 2000.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Infante
    • 1
  • Karl W. Koch
    • 3
  • Prantik Mazumder
    • 3
  • Lili Tian
    • 3
  • Albert Carrilero
    • 1
  • Domenico Tulli
    • 1
  • David Baker
    • 3
  • Valerio Pruneri
    • 1
    • 2
  1. 1.ICFO-Institut de Ciències FotòniquesCastelldefels, BarcelonaSpain
  2. 2.ICREA-Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain
  3. 3.Corning IncorporatedCorningUSA

Personalised recommendations