Nano Research

, Volume 6, Issue 6, pp 381–388 | Cite as

Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output

  • Sebastian Pregl
  • Walter M. Weber
  • Daijiro Nozaki
  • Jens Kunstmann
  • Larysa Baraban
  • Joerg Opitz
  • Thomas Mikolajick
  • Gianaurelio Cuniberti
Research Article

Abstract

We present novel Schottky barrier field effect transistors consisting of a parallel array of bottom-up grown silicon nanowires that are able to deliver high current outputs. Axial silicidation of the nanowires is used to create defined Schottky junctions leading to on/off current ratios of up to 106. The device concept leverages the unique transport properties of nanoscale junctions to boost device performance for macroscopic applications. Using parallel arrays, on-currents of over 500 μA at a source-drain voltage of 0.5 V can be achieved. The transconductance is thus increased significantly while maintaining the transfer characteristics of single nanowire devices. By incorporating several hundred nanowires into the parallel array, the yield of functioning transistors is dramatically increased and deviceto-device variability is reduced compared to single devices. This new nanowirebased platform provides sufficient current output to be employed as a transducer for biosensors or a driving stage for organic light-emitting diodes (LEDs), while the bottom-up nature of the fabrication procedure means it can provide building blocks for novel printable electronic devices.

Keywords

silicon nanowire effective Schottky barrier lowering parallel array electric field enhancement output current amplification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_315_MOESM1_ESM.pdf (536 kb)
Supplementary material, approximately 628 KB.

References

  1. [1]
    Duan, X.; Niu, C.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.CrossRefGoogle Scholar
  2. [2]
    Wang, D.; Sheriff, B. A.; McAlpine, M.; Heath, J. R. Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Res. 2008, 1, 9–21.CrossRefGoogle Scholar
  3. [3]
    Heinzig, A.; Slesazeck, S.; Kreupl, F.; Mikolajick, T.; Weber, W. M. Reconfigurable silicon nanowire transistors. Nano Lett. 2012, 12, 119–124.CrossRefGoogle Scholar
  4. [4]
    Tang, W.; Dayeh, A. S.; Picraux, S. T.; Huang, J. Y.; Tu, T. K. Ultrashort channel silicon nanowire transistors with nickel silicide source/drain contacts. Nano Lett. 2012, 12, 3979–3985.CrossRefGoogle Scholar
  5. [5]
    Weisse, J. M.; Lee, C. H.; Kim, D. R.; Zheng, X. Fabrication of flexible and vertical silicon nanowire electronics. Nano Lett. 2012, 12, 3339–3343.CrossRefGoogle Scholar
  6. [6]
    Qian, F.; Gradecak, S.; Li, Y.; Wen, C.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.CrossRefGoogle Scholar
  7. [7]
    Knoch, J.; Zhang, M.; Appenzeller, J.; Mantl, S. Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors. Appl. Phys. A. 2007, 87, 351–357.CrossRefGoogle Scholar
  8. [8]
    Dellas, N. S.; Schuh, C. J.; Mohney, S. E. Silicide formation in contacts to Si nanowires. J. Mater. Sci. 2012, 47, 6189–6205.CrossRefGoogle Scholar
  9. [9]
    Tarasov, A.; Wipf, M.; Bedner, K.; Kurz, J.; Fu, W.; Guzenko, V. A.; Knopfmacher, O.; Stoop, R. L.; Calame, M.; Schoenenberger, C. True reference nanosensor realized with silicon nanowires. Langmuir 2012, 28, 9899–9905.CrossRefGoogle Scholar
  10. [10]
    Zheng, G.; Gao, X. P. A.; Lieber, C. M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 2010, 10, 3179–3183.CrossRefGoogle Scholar
  11. [11]
    Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.CrossRefGoogle Scholar
  12. [12]
    Zaremba-Tymieniecki, M.; Durrani, Z. A. K.; Schottky-barrier lowering in silicon nanowire field-effect transistors prepared by metal-assisted chemical etching. Appl. Phys. Lett. 2011, 98, 102113.CrossRefGoogle Scholar
  13. [13]
    Lake, R.; Klimeck, G.; Bowen, R.; Jovanovic, D.; Blanks, D.; Swaminatan, M. Quantum transport with band-structure and Schottky contacts. Phys. Status Solidi. B 1997, 204, 354–357.CrossRefGoogle Scholar
  14. [14]
    Werner, J. H.; Güttler, H. H. Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 1991, 69, 1522–1533.CrossRefGoogle Scholar
  15. [15]
    Feste, S. F.; Zhang, M.; Knoch, J.; Mantl, S. Impact of variability on the performance of SOI Schottky barrier MOSFETs. Solid State Electron. 2009, 53, 418–423.CrossRefGoogle Scholar
  16. [16]
    Tsaur, B.-Y.; Silversmith, D. J.; Mountain, R. W.; Anderson C. H. Jr. Effects of interface structure on the electrical characteristics of PtSi-Si Schottky barrier contacts. Thin Solid Films 1982, 93, 331–340.CrossRefGoogle Scholar
  17. [17]
    Talin, A. A.; Hunter, L. L.; Leonard, F.; Rokad, B. Large area, dense silicon nanowire array chemical sensors. Appl. Phys. Lett. 2006, 89, 153102.CrossRefGoogle Scholar
  18. [18]
    Lee, M.; Jeon, Y.; Moon, T.; Kim, S. Top-down fabrication of fully CMOS-compatible silicon nanowire arrays and their integration into CMOS inverters on plastic. ACS Nano 2011, 5, 2629–2636.CrossRefGoogle Scholar
  19. [19]
    Fan, Z.; Ho, J. C.; Jacobson, Z. A.; Yerushalmi, R.; Alley, R. L.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20–25CrossRefGoogle Scholar
  20. [20]
    Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 2004, 4, 433–436.CrossRefGoogle Scholar
  21. [21]
    Yu, J.; Chung, S.; Heath, J. R. Silicon nanowires: Preparation, device fabrication, and transport properties. J. Phys. Chem. B 2000, 104, 11864–11870.CrossRefGoogle Scholar
  22. [22]
    Schmidt, V.; Senz, S.; Gösele, U. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 2005, 5, 931–935.CrossRefGoogle Scholar
  23. [23]
    Kotov, N. A.; Dekany, I.; Fendler, J. H. Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films. J. Phys. Chem. 1995, 99, 13065–13069.CrossRefGoogle Scholar
  24. [24]
    Weber, W. M.; Duesberg, G. S.; Graham, A. P.; Liebau, M.; Unger, E.; Cheze, C.; Geelhaar, L.; Lugli, P.; Riechert, H.; Kreupl, F. Silicon nanowires: Catalytic growth and electrical characterization. Phys. Status Solidi B 2006, 243, 3340–3345.CrossRefGoogle Scholar
  25. [25]
    Dellas, N. S.; Liu, B. Z.; Eichfeld, S. M.; Eichfeld, C. M.; Mayer, T. S.; Mohney, S. E. Orientation dependence of nickel silicide formation in contacts to silicon nanowires. J. Appl. Phys. 2009, 105, 094309.CrossRefGoogle Scholar
  26. [26]
    Olowolafe, J. O.; Nicolet, M. A.; Mayer, J. W. Influence of the nature of the Si substrate on nickel silicide formed from thin Ni films. Thin Solid Films 1976, 38, 143–150.CrossRefGoogle Scholar
  27. [27]
    Ogata, K.; Sutter, E.; Zhu, X.; Hofmann, S. Ni-silicide growth kinetics in Si and Si/SiO2 core/shell nanowires. Nanotechnology 2011, 22, 365305.CrossRefGoogle Scholar
  28. [28]
    Weber, W. M.; Geelhaar, L.; Unger, E.; Cheze, C.; Kreupl, F.; Riechert, H.; Lugli, P. Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Phys. Status Solidi B 2007, 244, 4170–4175.CrossRefGoogle Scholar
  29. [29]
    Weber, W. M.; Graham, A. P.; Duesberg, G. S.; Liebau, M.; Cheze, C.; Geelhaar, L.; Unger, E.; Pamler, W.; Hoenlein, W.; Riechert, H.; et al. Non-linear gate length dependence of on-current in Si-nanowire FETs. In Proceedings of the 36th European Solid-State Device Research Conference (ESSDERC), 2006.Google Scholar
  30. [30]
    Martin, D.; Heinzig, A.; Grube, M.; Geelhaar, L.; Mikolajick, T.; Riechert, H.; Walter, M. W. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Phys. Rev. Lett. 2011, 107, 216807.CrossRefGoogle Scholar
  31. [31]
    Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Cheze, C.; Riechert, H.; Lugli, P.; et al. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2006, 6, 2660–2666.CrossRefGoogle Scholar
  32. [32]
    Sze, S. M.; Kwok, K. N. Physics of Semiconductor Devices; John Wiley & Sons: New York, 2006.CrossRefGoogle Scholar
  33. [33]
    Park, H.; Park, S.; Hong Shick, M.; Seonghoon, J. Investigation of noise in silicon nanowire transistors through quantum simulations. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2008.Google Scholar
  34. [34]
    Saurabh, M.; Mohata, D.; Ramakrishnan, K.; Jawar, S.; Aaron, V. L.; Ashkar, A.; Mayer, T. S.; Vijaykrishnan, N.; Schlom, D. G.; Liu, A. W. K.; et al. Experimental demonstration of 100 nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications. In Proceedings of IEEE International Conference on Electron Devices Meeting (IEDM), 2009.Google Scholar
  35. [35]
    Bhuwalka, K. K.; Schulze, J.; Eisele, I. Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. In Proceedings of IEEE International Conference on Transactions on Electron Devices, 2005.Google Scholar
  36. [36]
    Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 2006, 6, 2929–2934.CrossRefGoogle Scholar
  37. [37]
    Tove, P. A. Methods of avoiding edge effects on semiconductor diodes. J. Phys. D 1982, 15, 517–536.CrossRefGoogle Scholar
  38. [38]
    Cao, Q.; Kim, H.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.CrossRefGoogle Scholar
  39. [39]
    Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Kang, S. J.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.CrossRefGoogle Scholar
  40. [40]
    Zschieschang, U.; Kang, M. J.; Takimiya, K.; Sekitani, T.; Someya, T.; Canzler, T. W.; Werner, A.; Blochwitz-Nimoth, J.; Klauk, H. Flexible low-voltage organic thin-film transistors and circuits based on C10-DNTT. J. Mater. Chem. 2012, 22, 4273–4277.CrossRefGoogle Scholar
  41. [41]
    Zhang, M.; Knoch, J.; Zhang, S.; Feste, S.; Schroeter, M.; Mantl, S. Threshold voltage variation in SOI Schottky-barrier MOSFETs. IEEE T. Electron. Dev. 2008, 55, 858–865.CrossRefGoogle Scholar
  42. [42]
    Zhang, M.; Knoch, J.; Zhao, Q. T.; Lenk, S.; Breuer, U.; Mantl, S. Schottky barrier height modulation using dopant segregation in Schottky-barrier SOI-MOSFETs. In: Proceedings of European Solid-State Device Research Conference (ESSDERC), 2005, Grenoble, France.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian Pregl
    • 1
    • 2
  • Walter M. Weber
    • 2
  • Daijiro Nozaki
    • 1
  • Jens Kunstmann
    • 1
  • Larysa Baraban
    • 1
  • Joerg Opitz
    • 3
  • Thomas Mikolajick
    • 2
    • 4
  • Gianaurelio Cuniberti
    • 1
    • 5
  1. 1.Institute for Materials Science and Max Bergmann Center of BiomaterialsTU DresdenDresdenGermany
  2. 2.NaMLab GmbHDresdenGermany
  3. 3.Fraunhofer Institute IZFP DresdenDresdenGermany
  4. 4.Institute for Semiconductors and Microsystems TechnologyTU DresdenDresdenGermany
  5. 5.Division of IT Convergence EngineeringPOSTECHPohangKorea

Personalised recommendations