Advertisement

Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior

  • 1105 Accesses

  • 16 Citations

Abstract

Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a “quadra-twin core” growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show lowtemperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. [1]

    Mitchell, K.; Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929–1952.

  2. [2]

    Kwon, S. G.; Hyeon, T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res. 2008, 41, 1696–1709.

  3. [3]

    Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093–11097.

  4. [4]

    Giebultowicz, T. M.; Samarth, N.; Luo, H.; Furdyna, J. K.; Klosowski, P.; Rhyne, J. J. Strain-engineered incommensurability in epitaxial Heisenberg antiferromagnets. Phys. Rev. B 1992, 46, 12076–12079.

  5. [5]

    Goede, O.; Heimbrodt, W. Optical properties of (Zn, Mn) and (Cd, Mn) chalcogenide mixed crystals and superlattices. Phys. Stat. Solidi B 1988, 146, 11–62.

  6. [6]

    Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 1988, 64, R29–R64.

  7. [7]

    Peng, Q.; Dong, Y. J.; Deng, Z. X.; Kou, H. Z.; Gao, S.; Li, Y. D. Selective synthesis and magnetic properties of α-MnSe and MnSe2 uniform microcrystals. J. Phys. Chem. B 2002, 106, 9261–9265.

  8. [8]

    Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3–7.

  9. [9]

    Levy, L.; Feltin, N.; Ingert, D.; Pileni, M. P. Three dimension- ally diluted magnetic semiconductor clusters Cd1-y MnyS with a range of sizes and compositions: Dependence of spectroscopic properties on the synthesis mode. J. Phys. Chem. B 1997, 101, 9153–9160.

  10. [10]

    Suyver, J. F.; Wuister, S. F.; Kelly, J. J.; Meijerink, A. Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+. Nano Lett. 2001, 1, 429–433.

  11. [11]

    Schlesinger, M. E. The Mn-Se (manganese-selenium) system. J. Phase Equilib. 1998, 19, 588–590.

  12. [12]

    Lindsay, R. Magnetic susceptibility of manganese selenide. Phys. Rev. 1951, 84, 569–571.

  13. [13]

    Thanigaimani, V.; Angahi, M. A. Optical properties of MnSe thin films. Thin Solid Films 1994, 245, 146–151.

  14. [14]

    Wu, M. Z.; Xiong, Y.; Jiang, N.; Ning, M.; Chen, Q. W. Hydrothermal preparation of α-MnSe and MnSe2 nanorods. J. Cryst. Growth 2004, 262, 567–571.

  15. [15]

    Qin, T.; Lu, J.; Wei, S.; Qi, P. F.; Peng, Y. Y.; Yang, Z. P.; Qian, Y. T. α-MnSe crystallites though solvothermal reaction in ethylenediamine. Inorg. Chem. Commun. 2002, 5, 369–371.

  16. [16]

    Wang, L. C.; Chen, L. Y.; Luo, T.; Bao, K. Y.; Qian, Y. T. A facile method to the cube-like MnSe2 microcrystallines via a hydrothermal process. Solid State Commun. 2006, 138, 72–75.

  17. [17]

    Liu, X. D.; Ma, J. M.; Peng, P.; Zheng, W. J. Hydrothermal synthesis of cubic MnSe2 and octahedral α-MnSe microcrystals. J. Cryst. Growth 2009, 311, 1359–1363.

  18. [18]

    Kolodziejski, L. A.; Gunshor, R. L.; Otsuka, N.; Gu, B. P.; Hefetz, Y.; Nurmikko, A. V. Two-dimensional metastable magnetic semiconductor structures. Appl. Phys. Lett. 1986, 48, 1482–1484.

  19. [19]

    Murray, R. M.; Forbes, B. C.; Heyding, R. D. The preparation and paramagnetic susceptibility of β-MnSe. Can. J. Chem. 1972, 50, 4059–4061.

  20. [20]

    Sines, I. T.; Misra, R.; Schiffer, P.; Schaak, R. E. Colloidal synthesis of non-equilibrium wurtzite-type MnSe. Angew. Chem. Int. Ed. 2010, 49, 4638–4640.

  21. [21]

    Yang, X. Y.; Wang, Y. N.; Sui, Y. M.; Huang, X. L.; Cui, T.; Wang, C. Z.; Liu, B. B.; Zou, G. T.; Zou, B. Morphology-controlled synthesis of anisotropic wurtzite MnSe nanocrystals: Optical and magnetic properties. Cryst. Eng. Comm. 2012, 14, 6916–6920.

  22. [22]

    Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S.-E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395–4398.

  23. [23]

    Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.

  24. [24]

    Peng, Z. A.; Peng, X. Nearly monodisperse and shape- controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

  25. [25]

    Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.

  26. [26]

    Gautam, U. K.; Panchakarla, L. S.; Dierre, B.; Fang, X. S.; Bando, Y.; Sekiguchi, T.; Govindaraj, A.; Golberg, D.; Rao, C. N. R. Solvothermal synthesis, cathodoluminescence, and field-emission properties of pure and N-doped ZnO nanobullets. Adv. Funct. Mater. 2009, 19, 131–140.

  27. [27]

    Ding, Y.; Ma, C.; Wang, Z. L. Self-catalysis and phase transformation in the formation of CdSe nanosaws. Adv. Mater. 2004, 16, 1740–1743.

  28. [28]

    Ma, C.; Wang, Z. L. Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws-a step towards nanomanufacturing. Adv. Mater. 2005, 17, 2635–2639.

  29. [29]

    Manna, L.; Scher, E. C.; Alivisatos, A. P. Shape control of colloidal semiconductor nanocrystals. J. Cluster Sci. 2002, 13, 521–532.

  30. [30]

    Jun, Y.-W.; Lee, S.-M.; Kang, N.-J.; Cheon, J. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J. Am. Chem. Soc. 2001, 123, 5150–5151.

  31. [31]

    Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

  32. [32]

    Chen, M.; Xie, Y.; Lu, J.; Xiong, Y. J.; Zhang, S. Y.; Qian, Y. T.; Liu, X. M. Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. J. Mater. Chem. 2002, 12, 748–753.

  33. [33]

    Yu, W. W.; Wang, Y. A.; Peng, X. G. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 2003, 15, 4300–4308.

  34. [34]

    Carbone, L.; Kudera, S.; Carlino, E.; Parak, W. J.; Giannini, C.; Cingolani, R.; Manna, L. Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. J. Am. Chem. Soc. 2006, 128, 748–755.

  35. [35]

    Iwanaga, H.; Fujii, M.; Takeuchi, S. Growth model of tetrapod zinc oxide particles. J. Cryst. Growth 1993, 134, 275–280.

  36. [36]

    Hu, J. Q.; Bando, Y.; Golberg, D. Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. Small 2005, 1, 95–99.

  37. [37]

    Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

  38. [38]

    Kanaras, A. G.; Sönnichsen, C.; Liu, H.; Alivisatos, A. P. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett. 2005, 5, 2164–2167.

  39. [39]

    Lee, G. H.; Huh, S. H.; Jeong, J. W.; Choi, B. J.; Kim, S. H.; Ri, H. C. Anomalous magnetic properties of MnO nanoclusters. J. Am. Chem. Soc. 2002, 124, 12094–12095.

  40. [40]

    Puglisi, A.; Mondini, S.; Cenedese, S.; Ferretti, A. M.; Santo, N.; Ponti, A. Monodisperse octahedral α-MnS and MnO nanoparticles by the decomposition of manganese oleate in the presence of sulfur. Chem. Mater. 2010, 22, 2804–2813.

  41. [41]

    Xu, M. H.; Zhong, W.; Yu, J. Y.; Zang, W. C.; Au, C.; Yang, Z. X.; Lv, L. Y.; Du, Y. W. Exchange-bias-like behavior from disordered surface spins in Li4Mn5O12 nanosticks. J. Phys. Chem. C 2010, 114, 16143–16147.

  42. [42]

    Díaz-Guerra, C.; Vila, M.; Piqueras, J. Exchange bias in single-crystalline CuO nanowires. Appl. Phys. Lett. 2010, 96, 193105.

  43. [43]

    Seo, W. S.; Jo, H. H.; Lee, K.; Kim, B.; Oh, S. J.; Park, J. T. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 1115–1117.

  44. [44]

    Schladt, T. D.; Graf, T.; Tremel, W. Synthesis and characterization of monodisperse manganese oxide nanoparticles-evaluation of the nucleation and growth mechanism. Chem. Mater. 2009, 21, 3183–3190.

  45. [45]

    Tian, Q. W.; Tang, M. H.; Jiang, F. R.; Liu, Y. W.; Wu, J. H.; Zou, R. J.; Sun, Y. G.; Chen, Z. G.; Li, R. W.; Hu, J. Q. Large-scaled star-shaped α-MnS nanocrystals with novel magnetic properties. Chem. Commun. 2011, 47, 8100–8102.

Download references

Author information

Correspondence to Renchao Che.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Supplementary material, approximately 727 KB.

Supplementary material, approximately 1.44 MB.

Supplementary material, approximately 1.44 MB.

Supplementary material, approximately 1.75 MB.

Supplementary material, approximately 1.75 MB.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, J., Zhang, F., Zhao, X. et al. Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior. Nano Res. 6, 275–285 (2013). https://doi.org/10.1007/s12274-013-0305-y

Download citation

Keywords

  • chalcogens
  • magnetic properties
  • nanocrystals
  • transmission electron microscopy