Advertisement

Nano Research

, Volume 6, Issue 4, pp 269–274 | Cite as

Raman scattering study of the phonon dispersion in twisted bilayer graphene

  • Jessica Campos-Delgado
  • Luiz G. Cançado
  • Carlos A. Achete
  • Ado Jorio
  • Jean-Pierre Raskin
Research Article

Abstract

Bilayer graphene with a twist angle θ between the layers generates a superlattice structure known as a Moiré pattern. This superlattice provides a θ-dependent q wavevector that activates phonons in the interior of the Brillouin zone. Here we show that this superlattice-induced Raman scattering can be used to probe the phonon dispersion in twisted bilayer graphene (tBLG). The effect reported here is different from the widely studied double-resonance in graphene-related materials in many aspects, and despite the absence of stacking order in tBLG, layer breathing vibrations (namely ZO’ phonons) are observed.

Keywords

twisted bilayer graphene Raman spectroscopy phonon branches 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Reich, S.; Thomsen, C.; Maultzsch, J. Carbon Nanotubes: Physical Concepts and Physical Properties; Wiley-VCH: Weinheim, 2004.Google Scholar
  2. [2]
    Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M. S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 2011, 60, 413–550.CrossRefGoogle Scholar
  3. [3]
    Jorio, A.; Dresselhaus, M. S.; Saito, R.; Dresselhaus, G. Raman Spectroscopy in Graphene Related Systems; Wiley- VCH: Weinheim, 2011.CrossRefGoogle Scholar
  4. [4]
    Thomsen, C.; Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 2000, 85, 5214–5217.CrossRefGoogle Scholar
  5. [5]
    Saito, R.; Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Pimenta, M. A. Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 2002, 88, 027401.CrossRefGoogle Scholar
  6. [6]
    Cançado, L. G.; Pimenta, M. A.; Neves, B. R. A.; Dantas, M. S. S.; Jorio, A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 2004, 93, 247401.CrossRefGoogle Scholar
  7. [7]
    Maultzsch, J.; Reich, S.; Thomsen, C. Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion. Phys. Rev. B 2004, 70, 155403.CrossRefGoogle Scholar
  8. [8]
    Cançado, L. G.; Pimenta, M. A.; Saito, R.; Jorio, A.; Ladeira, L. O.; Grueneis, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S. Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B 2002, 66, 035415.CrossRefGoogle Scholar
  9. [9]
    Tan, P. H.; Hu, C. Y.; Dong, J.; Shen, W. C.; Zhang, B. F. Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Phys. Rev. B 2001, 64, 214301.CrossRefGoogle Scholar
  10. [10]
    Fantini, C.; Jorio, A.; Souza, M.; Ladeira, L. O.; Souza, A. G.; Saito, R.; Samsonidze, Ge. G.; Dresselhaus, G.; Dresselhaus, M. S.; Pimenta, M. A. One-dimensional character of combination modes in the resonance Raman scattering of carbon nanotubes. Phys. Rev. Lett. 2004, 93, 087401.CrossRefGoogle Scholar
  11. [11]
    Kürti, J.; Zólyomi, V.; Grüneis, A.; Kuzmany, H. Double resonant Raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 165433.CrossRefGoogle Scholar
  12. [12]
    Souza Filho, A. G.; Jorio, A.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Pimenta, M. A.; Dresselhaus, G. et al. Anomalous two-peak G′-band Raman effect in one isolated single-wall carbon nanotube. Phys. Rev. B 2002, 65, 085417.CrossRefGoogle Scholar
  13. [13]
    Samsonidze, Ge. G.; Saito, R.; Jorio, A.; Souza Filho, A. G.; Grüneis, A.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Phonon trigonal warping effect in graphite and carbon nanotubes. Phys. Rev. Lett. 2003, 90, 027403.CrossRefGoogle Scholar
  14. [14]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  15. [15]
    Mafra, D. L.; Samsonidze, Ge. G.; Malard, L. M.; Elias, D. C.; Brant, J. C.; Plentz, F.; Alves, E. S.; Pimenta, M. A. Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering. Phys. Rev. B 2007, 76, 233407.CrossRefGoogle Scholar
  16. [16]
    Tuinstra, F.; Koenig, J. L. Characterization of graphite fiber surfaces with Raman spectroscopy. J. Compos. Mater. 1970, 4, 492–499.Google Scholar
  17. [17]
    Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.CrossRefGoogle Scholar
  18. [18]
    Gupta, A. K.; Tang, Y. J.; Crespi, V. H.; Eklund, P. C. Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene. Phys. Rev. B 2010, 82, 241406.CrossRefGoogle Scholar
  19. [19]
    Carozo, V.; Almedia, C. M.; Ferreira, E. H. M.; Cançado, L. G.; Achete, C. A.; Jorio, A. Raman signature of graphene superlattices. Nano Lett. 2011, 11, 4527–4534.CrossRefGoogle Scholar
  20. [20]
    Righi, A.; Costa, S. D.; Chacham, H.; Fantini, C.; Venezuela, P.; Magnuson, C.; Colombo, L.; Bacsa, W. S.; Ruoff, R. S.; Pimenta, M. A. Graphene Moiré patterns observed by umklapp double-resonance Raman scattering. Phys. Rev. B 2011, 84, 241409.CrossRefGoogle Scholar
  21. [21]
    Rao, R.; Podila, R.; Tsuchikawa, R.; Katoch, J.; Tishler, D.; Rao, A. M.; Ishigami, M. Effect of layer stacking on the combination Raman modes in graphene. ACS Nano 2011, 5, 1594–1599.CrossRefGoogle Scholar
  22. [22]
    Kim, K.; Coh, S.; Tan, L. Z.; Regan, W.; Yuk, J. M.; Chatterjee, E.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; Zettl, A. Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 2012, 108, 246103.CrossRefGoogle Scholar
  23. [23]
    Havener, R. W.; Zhuang, H. L.; Brown, L.; Hennig, R. G.; Park, J. Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 2012, 12, 3162–3167.CrossRefGoogle Scholar
  24. [24]
    Campos-Delgado, J.; Algara-Siller, G.; Santos, C. N.; Kaiser, U.; Raskin, J. P. Twisted bi-layer graphene: Microscopic rainbows. Small 2013, in press.Google Scholar
  25. [25]
    Robinson, J. T.; Schmucker, S. W.; Diaconescu, C. B.; Long, J. P.; Culbertson, J. C.; Ohta, T.; Friedman, A. L.; Beechem, T. E. Electronic hybridization of large-area stacked graphene films. ACS Nano 2013, 7, 637–644.CrossRefGoogle Scholar
  26. [26]
    Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of double- resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two phonon bands. Phys. Rev. B 2011, 84, 035433.CrossRefGoogle Scholar
  27. [27]
    Lui, C. H.; Malard, L. M.; Kim, S.; Lantz, G.; Leverge, F. E.; Saito, R.; Heinz, T. F. Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 2012, 12, 5539–5544.CrossRefGoogle Scholar
  28. [28]
    Wang, Y. N.; Su, Z. H.; Wu, W.; Nie, S.; Xie, N.; Gong, H. Q.; Guo, Y.; Lee, J. H.; Xing, S. R.; Lu, X. X. et al. Twisted bilayer graphene superlattices. arXiv, in press, DOI: arXiv:1301.4488. http://arxiv.org/abs/1301.4488.
  29. [29]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large- area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jessica Campos-Delgado
    • 1
  • Luiz G. Cançado
    • 2
  • Carlos A. Achete
    • 3
  • Ado Jorio
    • 2
  • Jean-Pierre Raskin
    • 1
  1. 1.Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Departamento de FísicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Divisão de Metrologia de Materiais, Instituto Nacional de MetrologiaQualidade e Tecnologia (INMETRO)XerémBrazil

Personalised recommendations