Nano Research

, Volume 6, Issue 4, pp 235–242 | Cite as

Site-controlled formation of InGaAs quantum nanostructures-Tailoring the dimensionality and the quantum confinement

  • Baolai Liang
  • Ping-Show Wong
  • Thai Tran
  • Vitaliy G. Dorogan
  • Yuriy I. Mazur
  • Morgan E. Ware
  • Gregory J. Salamo
  • Chih-Kang Shih
  • Diana L. Huffaker
Research Article

Abstract

We report on InGaAs quantum disks (QDks) controllably formed on the top (001) facet of nano-patterned GaAs pyramidal platforms. The QDks exhibit pyramidal shape with special facets and varied dimensions, depending on the GaAs pyramidal buffer and the amount of InGaAs deposited. The formation of QDks is explained by the overgrowth of an InGaAs layer and thereafter coalescence of small InGaAs islands. Photoluminescence (PL) characteristics of ensemble QDks and exciton features of individual QDks together demonstrate that we may achieve a transition from zero-dimensional (0D) to two-dimensional (2D) quantum structure with increasing QDk size. This transition provides the flexibility to continuously tailor the dimensionality and subsequently the quantum confinement of semiconductor nanostructures via site-controlled self-assembled epitaxy for device applications based on single quantum structures.

Keywords

selected area epitaxy quantum confinement quantum disk photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bimberg, D.; Grundmann, M.; Ledentsov, N. N. Quantum dot heterostructures; Wiley: New York, 1998.Google Scholar
  2. [2]
    Bayer, M.; Hawrylak, P.; Hinzer, K.; Fafard, S.; Korkusinski, M.; Wasilewski, Z. R.; Stern, O.; Forchel, A. Coupling and entangling of quantum states in quantum dot molecules. Science 2001, 291, 451–453.CrossRefGoogle Scholar
  3. [3]
    Yuan, Z. L.; Kardynal, B. E.; Stevenson, R. M.; Shields, A. J.; Lobo, C. J.; Cooper, K.; Beattie, N. S.; Ritchie, D. A.; Pepper, M. Electrically driven single-photon source. Science 2002, 295, 102–105.CrossRefGoogle Scholar
  4. [4]
    Li, X. Q.; Wu, Y. W.; Steel, D.; Gammon, D.; Stievater, T. H.; Katzer, D. S.; Park, D.; Piermarocchi, C.; Sham, L. J. An all-optical quantum gate in a semiconductor quantum dot. Science 2003, 301, 809–811.CrossRefGoogle Scholar
  5. [5]
    Leonard, D.; Pond, K.; Petroff, P. M. Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B. 1994, 50, 11687–11692.CrossRefGoogle Scholar
  6. [6]
    Xie, Q.; Madhukar, A.; Chen, P.; Kobayashi, N. P. Vertically self-organized InAs quantum box islands on GaAs(100). Phys. Rev. Lett. 1995, 75, 2542–2545.CrossRefGoogle Scholar
  7. [7]
    Huffaker, D. L.; Park, G.; Zou, Z.; Shchekin, O. B.; Deppe, D. G. 1.3 μm room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett. 1998, 73, 2564–2566.CrossRefGoogle Scholar
  8. [8]
    Bhattacharya, P.; Ghosh, S.; Stiff-Roberts, A. D. Quantum dot opto-eletroniuc devices. Annu. Rev. Mater. Res. 2004, 34, 1–40.CrossRefGoogle Scholar
  9. [9]
    Zhu, Q.; Karlsson, K. F.; Pelucchi, E.; Kapon, E. Transition from two-dimensional to three-dimensional quantum confinement in semiconductor quantum wires/quantum dots. Nano Lett. 2007, 7, 2227–2233.CrossRefGoogle Scholar
  10. [10]
    Wei, G.; Forrest, S. R. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. Nano Lett. 2007, 7, 218–222.CrossRefGoogle Scholar
  11. [11]
    Xie, Q.; Chen, P.; Madhukar, A. InAs island-induced-strain driven adatom migration during GaAs overlayer growth. Appl. Phys. Lett. 1994, 65, 2051–2053.CrossRefGoogle Scholar
  12. [12]
    Caroff, P.; Wagner, J. B.; Dick, K. A.; Nilsson, H. A.; Jeppsson, M.; Deppert, K.; Samuelson, L.; Wallenberg, L. R.; Wernersson, L. E. High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. Small 2008, 4, 878–882.CrossRefGoogle Scholar
  13. [13]
    Mano, T.; Kuroda, T.; Sanguinetti, S.; Ochiai, T.; Tateno, T.; Kim, J.; Noda, T.; Kawabe, M.; Sakoda, K.; Kido, G.; Koguchi, N. Self-assembly of concentric quantum double rings. Nano Lett. 2005, 5, 425–428.CrossRefGoogle Scholar
  14. [14]
    Li, A.; Wang, Zh. M.; Wu, J.; Salamo, G. J. Holed nanostructures formed by aluminum droplets on a GaAs substrate. Nano Res. 2010, 3, 490–495.CrossRefGoogle Scholar
  15. [15]
    Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.CrossRefGoogle Scholar
  16. [16]
    Wong, P. S.; Liang, B. L.; Huffaker, D. L. InAs quantum dots on nanopatterned GaAs(001) surface: The growth, optical properties, and device implementation. J. Nanosci. & Nanotechnol. 2010, 10, 1537–1550.CrossRefGoogle Scholar
  17. [17]
    Wong, P. S.; Balakrishnan, G.; Nuntawong, N.; Tatebayashi, J.; Huffaker, D. L. Controlled InAs quantum dot nucleation on faceted nanopatterned pyramids. Appl. Phys. Lett. 2007, 90, 183103.CrossRefGoogle Scholar
  18. [18]
    Hahn, C. K.; Motohisa, J.; Fukui, T. Formation of single and double self-organized InAs quantum dot by selective area metal-organic vapor phase epitaxy. Appl. Phys. Lett. 2000, 76, 3947–3949.CrossRefGoogle Scholar
  19. [19]
    Hsieh, T. P.; Chyi, J. I.; Chang, H. S.; Chen, W. Y.; Hsu, T. M.; Chang, W. H. Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane. Appl. Phys. Lett. 2007, 90, 073105.CrossRefGoogle Scholar
  20. [20]
    Chang, H. S.; Hsu, C. M.; Chen, W. Y.; Hsieh, T. P.; Chyi, J. I.; Hsu, T. M. High extractive single-photon emissions from InGaAs quantum dots on a GaAs pyramid-like multifaceted structure. Nanotechnology 2008, 19, 045714.CrossRefGoogle Scholar
  21. [21]
    Tatebayashi, J.; Nishioka, M.; Someya, T.; Arakawa, Y. Area-controlled growth of InAs quantum dots and improvement of density and size distribution. Appl. Phys. Lett. 2000, 77, 3382–3384.CrossRefGoogle Scholar
  22. [22]
    Lee, H. S.; Lee, J. Y.; Kim, T. W.; Choo, D. C.; Kim, M. D.; Seo, S. Y.; Shin, J. H. Dependence of the InAs size distribution on the stacked layer number for vertically stacked InAs/GaAs quantum dots. J. Cryst. Growth. 2002, 241, 63–68.CrossRefGoogle Scholar
  23. [23]
    Sanguinetti, S.; Chiantoni, G.; Grilli, E.; Guzzi, M.; Henini, M.; Polimeni, A.; Patane, A.; Eaves, L.; Main, P. C. Substrate orientation dependence of island nucleation critical thickness in strained heterostructures. Europhys. Lett. 1999, 47, 701–707.CrossRefGoogle Scholar
  24. [24]
    Millo, O.; Steiner, D.; Katz, D.; Aharoni, A.; Kan, S.; Mokari T.; Banin, U. Transition from zero-dimensional to one-dimensional behavior in InAs and CdSe nanorods. Physica E. 2005, 26, 1–8.CrossRefGoogle Scholar
  25. [25]
    Altieri, P.; Gurioli, M.; Sanguinetti, S.; Grilli, E.; Guzzi, M.; Frigeri, P.; Franchi, S. Competition in the carrier capture between InGaAs/AlGaAs quantum dots and deep point defects. Eur. Phys. J. B. 2002, 28, 157–161.CrossRefGoogle Scholar
  26. [26]
    Wong, P. S.; Liang, B. L.; Lin, A.; Tatebayashi, J.; Huffaker, D. L. 1.52 μm photoluminescence emissions from InAs quantum dots grown on nanopatterned GaAs buffer. Appl. Phys. Lett. 2010, 97, 143111.CrossRefGoogle Scholar
  27. [27]
    Plaut, A. S.; Kash, K.; Van Der Gaag, B. P.; Gozdz, A. S.; Harbison, J. P.; Florez, L. T. Optical nonlinearity in GaAs quantum dots. J. Appl. Phys. 2007, 101, 106107–106109.CrossRefGoogle Scholar
  28. [28]
    Baier, M.; Watanabe, S.; Pelucchi, E.; Kapon, E. High uniformity of site-controlled pyramidal quantum dots grown on prepatterned substrates. Appl. Phys. Lett. 2004, 84, 1943–1945.CrossRefGoogle Scholar
  29. [29]
    Tran, T.; Muller, A.; Shih, C. K.; Wong, P. S.; Balakrishnan, G.; Nuntawong, N.; Tatebayashi, J.; Huffaker, D. L. Single dot spectroscopy of site-controlled InAs quantum dots nucleated on GaAs nanopyramids. Appl. Phys. Lett. 2007, 91, 133104.CrossRefGoogle Scholar
  30. [30]
    Kiravittaya, S.; Benyoucef, M.; Zapf-Gottwick, R.; Rastelli, A.; Schmidt, O. G. Ordered GaAs quantum dot arrays on GaAs(001): Single photon emission and fine structure splitting. Appl. Phys. Lett. 2006, 89, 233102.CrossRefGoogle Scholar
  31. [31]
    Mazur, Yu. I.; Liang, B. L.; Wang, Zh. M.; Tarasov, G. G.; Guzun, D.; Salamo, G. J.; Mishima, T. D.; Johnson, M. B. Lengthening of the photoluminescence decay time of InAs quantum dots coupled to InGaAs/GaAs quantum well. J. Appl. Phys. 2006, 100, 054313.CrossRefGoogle Scholar
  32. [32]
    Stevenson, R. M.; Young, R. J.; See, P.; Norman, C. E.; Shields, A. J.; Atkinson, P.; Ritchie, D. A. Strong directional dependence of single-quantum-dot fine structure. Appl. Phys. Lett. 2005, 87, 133120.CrossRefGoogle Scholar
  33. [33]
    Hsu, C. W.; Lundskog, A.; Karlsson, K. F.; Forsberg, U.; Janzén, E.; Holtz, P. O. Single excitons in InGaN quantum dots on GaN pyramid arrays. Nano Lett. 2011, 11, 2415–2418.CrossRefGoogle Scholar
  34. [34]
    Hideki G.; Ando, H. Excitonic quantum confinement effects and exciton electroabsorption in semiconductor thin quantum boxes. J. Appl. Phys. 1997, 82, 1667–1677.CrossRefGoogle Scholar
  35. [35]
    Gotoh, H.; Kamada, H.; Ando, H.; Temmyo, J. Lateral electric-field effects on excitonic photoemissions in InGaAs quantum disks. Appl. Phys. Lett. 2000, 76, 867–869.CrossRefGoogle Scholar
  36. [36]
    Qin, L. D.; Banholzer, M. J.; Millstone, J. E.; Mirkin, C. A. Nanodisk codes. Nano Lett. 2007, 7, 3849–3853.CrossRefGoogle Scholar
  37. [37]
    Banholzer, M. J.; Osberg, K. D.; Li, S. Z.; Mangelson, B. F.; Schatz, G. C.; Mirkin, C. A. Silver-based nanodisk codes. ACS Nano 2010, 4, 5446–5452.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Baolai Liang
    • 1
  • Ping-Show Wong
    • 1
  • Thai Tran
    • 2
  • Vitaliy G. Dorogan
    • 3
  • Yuriy I. Mazur
    • 3
  • Morgan E. Ware
    • 3
  • Gregory J. Salamo
    • 3
  • Chih-Kang Shih
    • 2
  • Diana L. Huffaker
    • 1
  1. 1.California NanoSystems InstituteUniversity of California at Los AngelesLos AngelesUSA
  2. 2.Department of PhysicsUniversity of Texas at AustinAustinUSA
  3. 3.Department of PhysicsUniversity of ArkansasFayettevilleUSA

Personalised recommendations