Advertisement

Nano Research

, Volume 6, Issue 3, pp 216–233 | Cite as

Towards full repair of defects in reduced graphene oxide films by two-step graphitization

  • Rubén Rozada
  • Juan I. Paredes
  • Silvia Villar-Rodil
  • Amelia Martínez-Alonso
  • Juan M. D. Tascón
Research Article

Abstract

The complete restoration of a perfect carbon lattice has been a central issue in the research on graphene derived from graphite oxide since this preparation route was first proposed several years ago, but such a goal has so far remained elusive. Here, we demonstrate that the highly defective structure of reduced graphene oxide sheets assembled into free-standing, paper-like films can be fully repaired by means of high temperature annealing (graphitization). Characterization of the films by X-ray photoelectron and Raman spectroscopy, X-ray diffraction and scanning tunneling microscopy indicated that the main stages in the transformation of the films were (i) complete removal of oxygen functional groups and generation of atomic vacancies (up to 1,500 °C), and (ii) vacancy annihilation and coalescence of adjacent overlapping sheets to yield continuous polycrystalline layers (1,800–2,700 °C) similar to those of highly oriented graphites. The prevailing type of defect in the polycrystalline layers were the grain boundaries separating neighboring domains, which were typically a few hundred nanometers in lateral size, exhibited long-range graphitic order and were virtually free of even atomic-sized defects. The electrical conductivity of the annealed films was as high as 577,000 S·m−1, which is by far the largest value reported to date for any material derived from graphene oxide, and strategies for further improvement without the need to resort to higher annealing temperatures are suggested. Overall, this work opens the prospect of truly achieving a complete restoration of the carbon lattice in graphene oxide materials.

Graphical abstract

Keywords

graphene graphene oxide films annealing defect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_298_MOESM1_ESM.pdf (421 kb)
Supplementary material, approximately 422 KB.

References

  1. [1]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nature Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  2. [2]
    Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.CrossRefGoogle Scholar
  3. [3]
    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.CrossRefGoogle Scholar
  4. [4]
    Luo, B.; Liu, S. M.; Zhi, L. J. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 2012, 8, 630–646.CrossRefGoogle Scholar
  5. [5]
    Liu, Y. X.; Dong, X. C.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307.CrossRefGoogle Scholar
  6. [6]
    Akhavan, O.; Ghaderi, E.; Rahighi, R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 2012, 6, 2904–2916.CrossRefGoogle Scholar
  7. [7]
    Machado, B. F.; Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2012, 2, 54–75.CrossRefGoogle Scholar
  8. [8]
    Feng, L. Z.; Liu, Z. Graphene in biomedicine: Opportunities and challenges. Nanomedicine 2011, 6, 317–324.CrossRefGoogle Scholar
  9. [9]
    Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.CrossRefGoogle Scholar
  10. [10]
    Wei, D. C.; Liu, Y. Q. Controllable synthesis of graphene and its applications. Adv. Mater. 2010, 22, 3225–3241.CrossRefGoogle Scholar
  11. [11]
    Guo, S. J.; Dong, S. J. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644–2672.CrossRefGoogle Scholar
  12. [12]
    Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.CrossRefGoogle Scholar
  13. [13]
    Esfandiar, A.; Akhavan, O.; Irajizad, A. Melatonin as a powerful bio-oxidant for reduction of graphene oxide. J. Mater. Chem. 2011, 21, 10907–10914.CrossRefGoogle Scholar
  14. [14]
    Mao, S.; Pu, H. H.; Chen, J. H. Graphene oxide and its reduction: Modeling and experimental progress. RSC Adv. 2012, 2, 2643–2662.CrossRefGoogle Scholar
  15. [15]
    Pei, S. F.; Cheng, H. M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228.CrossRefGoogle Scholar
  16. [16]
    Akhavan, O.; Ghaderi, E. Escherichia coli bacteria reduced graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 2012, 50, 1853–1860.CrossRefGoogle Scholar
  17. [17]
    Akhavan, O.; Kalaee, M.; Alavi, Z. S.; Ghiasi, S. M. A.; Esfandiar, A. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 2012, 50, 3015–3025.CrossRefGoogle Scholar
  18. [18]
    Compton, O. C.; Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010, 6, 711–723.CrossRefGoogle Scholar
  19. [19]
    Eda, G.; Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 2010, 22, 2392–2415.CrossRefGoogle Scholar
  20. [20]
    Gómez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic structure of reduced graphene oxide. Nano Lett. 2010, 10, 1144–1148.CrossRefGoogle Scholar
  21. [21]
    Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010, 22, 4467–4472.CrossRefGoogle Scholar
  22. [22]
    Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.CrossRefGoogle Scholar
  23. [23]
    Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577–2583.CrossRefGoogle Scholar
  24. [24]
    López, V.; Sundaram, R. S.; Gómez-Navarro, C.; Olea, D.; Burghard, M.; Gómez-Herrero, J.; Zamora, F.; Kern, K. Chemical vapor deposition repair of graphene oxide: A route to highly-conductive graphene monolayers. Adv. Mater. 2009, 21, 4683–4686.CrossRefGoogle Scholar
  25. [25]
    Dai, B. Y.; Fu, L.; Liao, L.; Liu, N.; Yan, K.; Chen, Y. S.; Liu, Z. F. High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res. 2011, 4, 434–439.CrossRefGoogle Scholar
  26. [26]
    Cheng, M.; Yang, R.; Zhang, L. C.; Shi, Z. W.; Yang, W.; Wang, D. M.; Xie, G. B.; Shi, D. X.; Zhang, G. Y. Restoration of graphene from graphene oxide by defect repair. Carbon 2012, 50, 2581–2587.CrossRefGoogle Scholar
  27. [27]
    Kholmanov, I. N.; Edgeworth, J.; Cavaliere, E.; Gavioli, L.; Magnuson, C.; Ruoff, R. S. Healing of structural defects in the topmost layer of graphite by chemical vapor deposition. Adv. Mater. 2011, 23, 1675–1678.CrossRefGoogle Scholar
  28. [28]
    Matuyama, E. Pyrolysis of graphitic acid. J. Phys. Chem. 1954, 58, 215–219.CrossRefGoogle Scholar
  29. [29]
    Maire, J.; Colas, H.; Maillard, P. Membranes de carbone et de graphite et leurs propietes. Carbon 1968, 6, 555–560.CrossRefGoogle Scholar
  30. [30]
    Toyoda, S.; Yamakawa, T.; Kobayashi, K.; Yamada, Y. Anisotropy of g-value in a graphitized carbon film. Carbon 1972, 10, 646–647.CrossRefGoogle Scholar
  31. [31]
    Matsuo, Y.; Sugie, Y. Preparation, structure and electrochemical property of pyrolytic carbon from graphite oxide. Carbon 1998, 36, 301–303.CrossRefGoogle Scholar
  32. [32]
    Matsuo, Y.; Sugie, Y. Pyrolytic carbon from graphite oxide as an anode of lithium-ion cells in 1 M LiClO4 propylene carbonate solution. Electrochem. Solid-State Lett. 1998, 1, 204–206.CrossRefGoogle Scholar
  33. [33]
    Matsuo, Y.; Sugie, Y. Electrochemical lithiation of carbon prepared from pyrolysis of graphite oxide. J. Electrochem. Soc. 1999, 146, 2011–2014.CrossRefGoogle Scholar
  34. [34]
    Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.CrossRefGoogle Scholar
  35. [35]
    Akhavan, O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 2010, 48, 509–519.CrossRefGoogle Scholar
  36. [36]
    Chen, C. M.; Huang, J. Q.; Zhang, Q.; Gong, W. Z.; Yang, Q. H.; Wang, M. Z.; Yang, Y. G. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 2012, 50, 659–667.CrossRefGoogle Scholar
  37. [37]
    Oberlin, A. Carbonization and graphitization. Carbon 1984, 22, 521–541.CrossRefGoogle Scholar
  38. [38]
    Long, D. H.; Li, W.; Qiao, W. M.; Miyawaki, J.; Yoon, S. H.; Mochida, I.; Ling, L. C. Graphitization behaviour of chemically derived graphene sheets. Nanoscale 2011, 3, 3652–3656.CrossRefGoogle Scholar
  39. [39]
    Ghosh, T.; Biswas, C.; Oh, J.; Arabale, G.; Hwang, T.; Luong, N. D.; Jin, M. H.; Lee, Y. H.; Nam, J. D. Solution-processed graphite membrane from reassembled graphene oxide. Chem. Mater. 2011, 24, 594–599.CrossRefGoogle Scholar
  40. [40]
    Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 12800–12804.CrossRefGoogle Scholar
  41. [41]
    Liang, J. J.; Huang, Y.; Oh, J.; Kozlov, M.; Sui, D.; Fang, S. L.; Baughman, R. H.; Ma, Y. F.; Chen, Y. S. Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv. Funct. Mater. 2011, 21, 3778–3784.CrossRefGoogle Scholar
  42. [42]
    Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y. W.; Ji, H. X.; Murali, S.; Wu, Y. P.; Perales, S.; Clevenger, B.; Ruoff, R. S. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 2012, 12, 1806–1812.CrossRefGoogle Scholar
  43. [43]
    Gao, H. C.; Wang, Y. X.; Xiao, F.; Ching, C. B.; Duan, H. W. Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells. J. Phys. Chem. C 2012, 116, 7719–7725.CrossRefGoogle Scholar
  44. [44]
    Hummers Jr., W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  45. [45]
    Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 2009, 25, 5957–5968.CrossRefGoogle Scholar
  46. [46]
    Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010, 114, 6426–6432.CrossRefGoogle Scholar
  47. [47]
    Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.CrossRefGoogle Scholar
  48. [48]
    Paci, J. T.; Belytschko, T.; Schatz, G. C. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J. Phys. Chem. C 2007, 111, 18099–18111.CrossRefGoogle Scholar
  49. [49]
    Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581–587.CrossRefGoogle Scholar
  50. [50]
    Solís-Fernández, P.; Rozada, R.; Paredes, J. I.; Villar-Rodil, S.; Fernández-Merino, M. J.; Guardia, L.; Martínez-Alonso, A.; Tascón, J. M. D. Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide. J. Alloy. Compd. 2012, 536, S532–S537.CrossRefGoogle Scholar
  51. [51]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  52. [52]
    Kim, M. C.; Hwang, G. S.; Ruoff, R. S. Epoxide reduction with hydrazine on graphene: A first principles study. J. Chem. Phys. 2009, 131, 064704.CrossRefGoogle Scholar
  53. [53]
    Gao, X. F.; Jang, J.; Nagase, S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 2010, 114, 832–842.CrossRefGoogle Scholar
  54. [54]
    Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Órfão, J. J. M. Modification of the surface chemistry of activated carbons. Carbon 1999, 37, 1379–1389.CrossRefGoogle Scholar
  55. [55]
    Chen, H. Q.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20, 3557–3561.CrossRefGoogle Scholar
  56. [56]
    Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.CrossRefGoogle Scholar
  57. [57]
    Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290.CrossRefGoogle Scholar
  58. [58]
    Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130.CrossRefGoogle Scholar
  59. [59]
    Cançado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A. General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106.CrossRefGoogle Scholar
  60. [60]
    Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.CrossRefGoogle Scholar
  61. [61]
    Lahaye, J.; Ehrburger, P. Fundamental Issues in Control of Carbon Gasification Reactivity; Kluwer Academic Publishers: Dordrecht, 1991.CrossRefGoogle Scholar
  62. [62]
    Cuesta, A.; Martínez-Alonso, A.; Tascón, J. M. D. Carbon reactivity in an oxygen plasma: A comparison with reactivity in molecular oxygen. Carbon 2001, 39, 1135–1146.CrossRefGoogle Scholar
  63. [63]
    Solís-Fernández, P.; Paredes, J. I.; Villar-Rodil, S.; Guardia, L.; Fernández-Merino, M. J.; Dobrik, G.; Biró, L. P.; Martínez-Alonso, A.; Tascón, J. M. D. Global and local oxidation behavior of reduced graphene oxide. J. Phys. Chem. C 2011, 115, 7956–7966.CrossRefGoogle Scholar
  64. [64]
    Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2010, 5, 26–41.CrossRefGoogle Scholar
  65. [65]
    Spain, I. L. Electronic transport properties of graphite, carbons, and related materials. In Chemistry and Physics of Carbon. Vol. 16. Walker Jr., P. L.; Thrower, P. A., Eds.; New York: Marcel Dekker, 1981; pp 119–304.Google Scholar
  66. [66]
    Morelli, D. T.; Uher, C. T 2 dependence of the in-plane resistivity of graphite at very low temperatures. Phys. Rev. B 1984, 30, 1080–1082.CrossRefGoogle Scholar
  67. [67]
    Nakajima, T.; Nakane, K.; Kawaguchi, M.; Watanabe, N. Preparation, structure and electrical conductivity of graphite intercalation compound with titanium fluoride. Carbon 1987, 25, 685–689.CrossRefGoogle Scholar
  68. [68]
    Hahn, J. R.; Kang, H. Vacancy and interstitial defects at graphite surfaces: Scanning tunneling microscopic study of the structure, electronic property, and yield for ion-induced defect creation. Phys. Rev. B 1999, 60, 6007–6017.CrossRefGoogle Scholar
  69. [69]
    Solís-Fernández, P.; Paredes, J. I.; Martínez-Alonso, A.; Tascón, J. M. D. New atomic-scale features in graphite surfaces treated in a dielectric barrier discharge plasma. Carbon 2008, 46, 1364–1367.CrossRefGoogle Scholar
  70. [70]
    Paredes, J. I.; Solís-Fernández, P.; Martinez-Alonso, A.; Tascón, J. M. D. Atomic vacancy engineering of graphitic surfaces: Controlling the generation and harnessing the migration of the single vacancy. J. Phys. Chem. C 2009, 113, 10249–10255.CrossRefGoogle Scholar
  71. [71]
    Wong, H. S.; Durkan, C.; Chandrasekhar, N. Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy. ACS Nano 2009, 3, 3455–3462.CrossRefGoogle Scholar
  72. [72]
    Magonov, S. N.; Whangbo, M. H. Surface Analysis with STM and AFM: Experimental and Theoretical Aspects of Image Analysis; VCH: Weinheim, 1996.Google Scholar
  73. [73]
    Paredes, J. I.; Martínez-Alonso, A.; Tascón, J. M. D. Early stages of plasma oxidation of graphite: Nanoscale physicochemical changes as detected by scanning probe microscopies. Langmuir 2002, 18, 4314–4323.CrossRefGoogle Scholar
  74. [74]
    Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1221.CrossRefGoogle Scholar
  75. [75]
    Barreiro, A.; Börrnert, F.; Rümmeli, M. H.; Büchner, B.; Vandersypen, L. M. K. Graphene at high bias: Cracking, layer by layer sublimation, and fusing. Nano Lett. 2012, 12, 1873–1878.CrossRefGoogle Scholar
  76. [76]
    Kurasch, S.; Kotakoski, J.; Lehtinen, O.; Skákalová, V.; Smet, J.; Krill, C. E.; Krasheninnikov, A. V.; Kaiser, U. Atom-by-atom observation of grain boundary migration in graphene. Nano Lett. 2012, 12, 3168–3173.CrossRefGoogle Scholar
  77. [77]
    Simonis, P.; Goffaux, C.; Thiry, P. A.; Biró, L. P.; Lambin, P.; Meunier, V. STM study of a grain boundary in graphite. Surf. Sci. 2002, 511, 319–322.CrossRefGoogle Scholar
  78. [78]
    Ohler, M.; Sanchez del Rio, M.; Tuffanelli, A.; Gambaccini, M.; Taibi, A.; Fantini, A.; Pareschi, G. X-ray topographic determination of the granular structure in a graphite mosaic crystal: A three-dimensional reconstruction. J. Appl. Cryst. 2000, 33, 1023–1030.CrossRefGoogle Scholar
  79. [79]
    Dong, X. C.; Su, C. Y.; Zhang, W. J.; Zhao, J. W.; Ling, Q. D.; Huang, W.; Chen, P.; Li, L. J. Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Phys. Chem. Chem. Phys., 2010, 12, 2164–2169.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rubén Rozada
    • 1
  • Juan I. Paredes
    • 1
  • Silvia Villar-Rodil
    • 1
  • Amelia Martínez-Alonso
    • 1
  • Juan M. D. Tascón
    • 1
  1. 1.Instituto Nacional del CarbónINCAR-CSICOviedoSpain

Personalised recommendations