Nano Research

, Volume 6, Issue 3, pp 174–181

Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes

  • Mingyuan Ge
  • Jiepeng Rong
  • Xin Fang
  • Anyi Zhang
  • Yunhao Lu
  • Chongwu Zhou
Research Article

Abstract

Nanostructured silicon has generated significant excitement for use as the anode material for lithium-ion batteries; however, more effort is needed to produce nanostructured silicon in a scalable fashion and with good performance. Here, we present a direct preparation of porous silicon nanoparticles as a new kind of nanostructured silicon using a novel two-step approach combining controlled boron doping and facile electroless etching. The porous silicon nanoparticles have been successfully used as high performance lithium-ion battery anodes, with capacities around 1,400 mA·h/g achieved at a current rate of 1 A/g, and 1,000 mA·h/g achieved at 2 A/g, and stable operation when combined with reduced graphene oxide and tested over up to 200 cycles. We attribute the overall good performance to the combination of porous silicon that can accommodate large volume change during cycling and provide large surface area accessible to electrolyte, and reduced graphene oxide that can serve as an elastic and electrically conductive matrix for the porous silicon nanoparticles.

Graphical abstract

Keywords

porous silicon nanoparticles scalable production lithium-ion battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_293_MOESM1_ESM.pdf (421 kb)
Supplementary material, approximately 421 KB.

References

  1. [1]
    Obrovac, M. N.; Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochim. Solid-State Lett. 2004, 7, A93–A96.CrossRefGoogle Scholar
  2. [2]
    Zhou, S.; Liu, X. H.; Liu, Wang, D. W. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860–863.CrossRefGoogle Scholar
  3. [3]
    Peng, K. Q.; Jie, J. S.; Zhang, W. J.; Lee, S. T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 2008, 93, 033105.CrossRefGoogle Scholar
  4. [4]
    Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 4, 1443–1450.CrossRefGoogle Scholar
  5. [5]
    Chan, C. K.; Peng, H. L.; Liu G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.CrossRefGoogle Scholar
  6. [6]
    Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.CrossRefGoogle Scholar
  7. [7]
    Song, T.; Xia, J. L.; Lee, J.-H.; Lee, D. H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.CrossRefGoogle Scholar
  8. [8]
    Qu, Y. Q.; Liao, L.; Li, Y. J.; Zhang, H.; Huang, Y.; Duan, X. F. Electrically conductive and optically active porous silicon nanowires. Nano Lett. 2009, 9, 4539–4543.CrossRefGoogle Scholar
  9. [9]
    Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.CrossRefGoogle Scholar
  10. [10]
    Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151–10154.CrossRefGoogle Scholar
  11. [11]
    Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N. A.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.CrossRefGoogle Scholar
  12. [12]
    Ge, M.; Rong, J.; Fang, X.; Zhou, C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318–2323.CrossRefGoogle Scholar
  13. [13]
    Chen, X. L.; Gerasopoulos, K.; Guo, J. C.; Brown, A.; Ghodssi, R.; Culver, J. N.; Wang, C. S. High rate performance of virus enabled 3D n-type Si anodes for lithium-ion batteries. Electrochim. Acta 2011, 56, 5210–5213.CrossRefGoogle Scholar
  14. [14]
    Lu, X. M.; Hanrath, T.; Johnston, K. P.; Korgel, B. A. Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate. Nano Lett. 2003, 3, 93–99.CrossRefGoogle Scholar
  15. [15]
    Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287, 1471–1473.CrossRefGoogle Scholar
  16. [16]
    Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75–79.CrossRefGoogle Scholar
  17. [17]
    Lin, V. S.-Y.; Motesharei, K.; Dancil, K. P. S.; Sailor, M. J.; Ghadiri, M. R. A porous silicon-based optical interferometric biosensor. Science 1997, 278, 840–843.CrossRefGoogle Scholar
  18. [18]
    Hochbaum, A. I.; Gargas, D.; Hwang, Y. J.; Yang, P. D. Single crystalline mesoporous silicon nanowires. Nano Lett. 2009, 9, 3550–3554.CrossRefGoogle Scholar
  19. [19]
    Tang, J. Y.; Wang, H.-T.; Lee, D. H.; Fardy, M.; Huo, Z.; Russell, T. P.; Yang, P. D. Holey silicon as an efficient thermoelectric material. Nano Lett. 2010, 10, 4279–4283.CrossRefGoogle Scholar
  20. [20]
    Peng, K. Q.; Hu, J. J.; Yan, Y. J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S.-T.; Zhu, J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 2006, 16, 387–394.CrossRefGoogle Scholar
  21. [21]
    Peng, K.; Lu, A.; Zhang, R. Lee, -S. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv. Funct. Mater. 2008, 18, 3026–3035.CrossRefGoogle Scholar
  22. [22]
    Patterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982.CrossRefGoogle Scholar
  23. [23]
    Silva, J. A.; Brito, M. C.; Costa, I.; Alves, J. M.; Serra, J. M.; Vallêra, A. M. Sprayed boric acid as a dopant source for silicon ribbons. Sol. Energy Mater. Sol. Cells 2007, 91, 1948–1953.CrossRefGoogle Scholar
  24. [24]
    Chan, C. K.; Ruffo, R.; Hong, S. S.; Huggins, R. A.; Cui, Y. Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sources 2009, 189, 34–39.CrossRefGoogle Scholar
  25. [25]
    Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 2010, 46, 2025–2027.CrossRefGoogle Scholar
  26. [26]
    Liu, Y.; Chen, B.; Cao, F.; Chen, H. L. W.; Zhao, X.; Yuan, J. One-pot synthesis of three-dimensional silver-embedded porous silicon micronparticles for lithium-ion batteries. J. Mater. Chem. 2011, 21, 17083–17086.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mingyuan Ge
    • 1
  • Jiepeng Rong
    • 1
  • Xin Fang
    • 1
  • Anyi Zhang
    • 1
  • Yunhao Lu
    • 2
  • Chongwu Zhou
    • 1
    • 3
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  3. 3.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations