Advertisement

Nano Research

, Volume 6, Issue 2, pp 149–158 | Cite as

Improved photoconductive properties of composite nanofibers based on aligned conjugated polymer and single-walled carbon nanotubes

  • Florian Massuyeau
  • Yuanchun Zhao
  • Abdel Aziz El Mel
  • Abu Yaya
  • Frédéric Geschier
  • Eric Gautron
  • Serge Lefrant
  • Jean Yves Mevellec
  • Chris Ewels
  • Chain-Shu Hsu
  • Eric Faulques
  • Jany Wéry
  • Jean Luc Duvail
Research Article

Abstract

We successfully address the challenge of aligning single-walled carbon nanotubes (SWNTs) and conjugated polymer chains in composite nanofibers for enhancing their opto-electrical properties. A pore-filling template strategy has been developed to prepare such nanocomposites from SWNTs and poly(para-phenylene vinylene) (PPV) chains, with both species well-oriented aligned along the pore axis. Addition of the SWNTs leads to a remarkable increase in photocurrent of four orders of magnitude as compared to equivalent pristine PPV nanofibers. Further analysis indicates that the strong photocurrent enhancement is not simply an effect of alignment, but additionally benefits from alignment-enhanced interaction of polymer chains with SWNTs, as supported by density functional theory (DFT) calculations.

Graphical abstract

Keywords

Tubular nanocomposites single-walled carbon nanotube (SWNT) photoconductivity transport properties conjugated polymer density functional theory (DFT) calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2013_290_MOESM1_ESM.pdf (547 kb)
Supplementary material, approximately 547 KB.

References

  1. [1]
    Nalwa, H. S. Handbook of Organic Electronics and Photonics; American Scientific Publishers: Valencia, 2008.Google Scholar
  2. [2]
    Harris, P. J. F. Carbon nanotube composites. Int. Mater. Rev. 2004, 49, 31–43.CrossRefGoogle Scholar
  3. [3]
    Dalton, A. B.; Stephan, C.; Coleman, J. N.; McCarthy, B.; Ajayan, P. M.; Lefrant, S.; Bernier, P.; Blau, W. J.; Byrne, H. J. Selective interaction of a semiconjugated organic polymer with single-wall nanotubes. J. Phys. Chem. B 2000, 104, 10012–10016.CrossRefGoogle Scholar
  4. [4]
    Steuerman, D. W.; Star, A.; Narizzano, R.; Choi, H.; Ries, R. S.; Nicolini, C.; Stoddart, J. F.; Heath, J. R. Interactions between conjugated polymers and single-walled carbon nanotubes. J. Phys. Chem. B 2002, 106, 3124–3130.CrossRefGoogle Scholar
  5. [5]
    Cadek, M.; Coleman, J. N.; Ryan, K. P.; Nicolosi, V.; Bister, G.; Fonseca, A.; Nagy, J. B.; Szostak, K.; Beguin, F.; Blau, W. J. Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano Lett. 2004, 4, 353–356.CrossRefGoogle Scholar
  6. [6]
    Woo, H. S.; Czerw, R.; Webster, S.; Carroll, D. L.; Ballato, J.; Strevens, A. E.; O’Brien, D.; Blau, W. J. Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene vinylene). Appl. Phys. Lett. 2000, 77, 1393–1395.CrossRefGoogle Scholar
  7. [7]
    Hoppe, H.; Sariciftci, N. S. Polymer solar cells. Adv. Polym. Sci. 2008, 214, 1–86.Google Scholar
  8. [8]
    Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M. H.; Ogura, M.; Okubo, T.; Maruyama, S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 2004, 385, 298–303.CrossRefGoogle Scholar
  9. [9]
    Yang, X.; Loos, J. Toward high-performance polymer solar cells: The importance of morphology control. Macromolecules 2007, 40, 1353–1362.CrossRefGoogle Scholar
  10. [10]
    Xin, H.; Reid, O. G.; Ren, G. Q.; Kim, F. S.; Ginger, D. S.; Jenekhe, S. A. Polymer nanowire/fullerene bulk heterojunction solar cells: How nanostructure determines photovoltaic properties. ACS Nano 2010, 4, 1861–1872.CrossRefGoogle Scholar
  11. [11]
    Thostenson, E. T.; Chou, T. W. Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D Appl. Phys. 2002, 35, L77–L80.CrossRefGoogle Scholar
  12. [12]
    Safadi, B.; Andrews, R.; Grulke, E. A. Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. J. Appl. Polym. Sci. 2002, 84, 2660–2669.CrossRefGoogle Scholar
  13. [13]
    Zhang, Y. G.; Chang, A. L.; Cao, J.; Wang, Q.; Kim, W.; Li, Y. M.; Morris, N.; Yenilmez, E.; Kong, J.; Dai, H. J. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 2001, 79, 3155–3157.CrossRefGoogle Scholar
  14. [14]
    Kimura, T.; Ago, H.; Tobita, M.; Ohshima, S.; Kyotani, M.; Yumura, M. Polymer composites of carbon nanotubes aligned by a magnetic field. Adv. Mater. 2002, 14, 1380–1383.CrossRefGoogle Scholar
  15. [15]
    Ko, F.; Gogotsi, Y.; Ali, A.; Naguib, N.; Ye, H. H.; Yang, G. L.; Li, C.; Willis, P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 2003, 15, 1161–1165.CrossRefGoogle Scholar
  16. [16]
    Wang, J.; Dai, J.; Yarlagadda, T. Carbon nanotube-conducting-polymer composite nanowires. Langmuir 2005, 21, 9–12.CrossRefGoogle Scholar
  17. [17]
    Ribbe, A. E.; Bodycomb, J.; Hashimoto, T. Quantitative analysis of the staining of a polyisoprene-block-polystyrene. Macromolecules 1999, 32, 3154–3156.CrossRefGoogle Scholar
  18. [18]
    Rayson, M. J.; Briddon, P. R. Highly efficient method for Kohn-Sham density functional calculations of 500–10000 atom systems. Phys. Rev. B 2009, 80, 205104.CrossRefGoogle Scholar
  19. [19]
    Briddon, P. R.; Jones, R. LDA calculations using a basis of Gaussian orbitals. Phys. Stat. Solidi B 2000, 217, 131–171.CrossRefGoogle Scholar
  20. [20]
    Massuyeau, F.; Duvail, J. L.; Athalin, H.; Lorcy, J. M.; Lefrant, S.; Wéry, J.; Faulques, E. Elaboration of conjugated polymer nanowires and nanotubes for tunable photo-luminescence properties. Nanotechnology 2009, 20, 155701.CrossRefGoogle Scholar
  21. [21]
    Massuyeau, F.; Faulques, E.; Athalin, H.; Lefrant, S.; Duvail, J. L.; Wéry, J.; Mulazzi, E.; Perego, R. Steady state and transient photoluminescence in poly-p-phenylene vinylene films and nanofibers. J. Chem. Phys. 2009, 130, 124706.CrossRefGoogle Scholar
  22. [22]
    Stengersmith, J. D.; Lenz, R. W.; Wegner, G. Spectroscopic and cyclic voltammetric studies of poly(para-phenylene vinylene) prepared from 2 different sulfonium salt precursor polymers. Polymer 1989, 30, 1048–1053.CrossRefGoogle Scholar
  23. [23]
    Wéry, J.; Aarab, H.; Lefrant, S.; Faulques, E.; Mulazzi, E.; Perego, R. Photoexcitations in composites of poly(paraphenylene vinylene) and single-walled carbon nanotubes. Phys. Rev. B 2003, 67, 115202.CrossRefGoogle Scholar
  24. [24]
    Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366.CrossRefGoogle Scholar
  25. [25]
    Duesberg, G. S.; Loa, I.; Burghard, M.; Syassen, K.; Roth, S. Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 85, 5436–5439.CrossRefGoogle Scholar
  26. [26]
    Rao, A. M.; Jorio, A.; Pimenta, M. A.; Dantas, M. S. S.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 2000, 84, 1820–1823.CrossRefGoogle Scholar
  27. [27]
    Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.CrossRefGoogle Scholar
  28. [28]
    Lefebvre, J.; Fraser, J. M.; Finnie, P.; Homma, Y. Photoluminescence from an individual single-walled carbon nanotube. Phys. Rev. B 2004, 69, 075403.CrossRefGoogle Scholar
  29. [29]
    Liem, H. M.; Etchegoin, P.; Whitehead, K. S.; Bradley, D. D. C. Raman anisotropy measurements: An effective probe of molecular orientation in conjugated polymer thin films. Adv. Funct. Mater. 2003, 13, 66–72.CrossRefGoogle Scholar
  30. [30]
    Orion, I.; Buisson, J. P.; Lefrant, S. Spectroscopic studies of polaronic and bipolaronic species in n-doped poly(paraphenylenevinylene). Phys. Rev. B 1998, 57, 7050–7065.CrossRefGoogle Scholar
  31. [31]
    Mulazzi, E.; Perego, R.; Aarab, H.; Mihut, L.; Lefrant, S.; Faulques, E.; Wéry, J. Photoconductivity and optical properties in composites of poly(paraphenylene vinylene) and single-walled carbon nanotubes. Phys. Rev. B 2004, 70, 155206.CrossRefGoogle Scholar
  32. [32]
    Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gösele, U. Polymer nanotubes by wetting of ordered porous templates. Science 2002, 296, 1997.CrossRefGoogle Scholar
  33. [33]
    Hulteen, J. C.; Martin, C. R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 1997, 7, 1075–1087.CrossRefGoogle Scholar
  34. [34]
    Panhuis, M. I. H.; Maiti, A.; Dalton, A. B.; van der Noort, A.; Coleman, J. N.; McCarthy, B.; Blau, W. J. Selective interaction in a polymer-single-wall carbon nanotube composite. J. Phys. Chem. B 2003, 107, 478–482.CrossRefGoogle Scholar
  35. [35]
    Chen, J.; Liu, H. Y.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 2002, 124, 9034–9035.CrossRefGoogle Scholar
  36. [36]
    Kang, Y. K.; Lee, O. S.; Deria, P.; Kim, S. H.; Park, T. H.; Bonnell, D. A.; Saven, J. G.; Therien, M. J. Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). Nano Lett. 2009, 9, 1414–1418.CrossRefGoogle Scholar
  37. [37]
    Gao, J.; Loi, M. A.; de Carvalho, E. J. F.; dos Santos, M. C. Selective wrapping and supramolecular structures of polyfluorene-carbon nanotube hybrids. ACS Nano 2011, 5, 3993–3999.CrossRefGoogle Scholar
  38. [38]
    Kymakis, E.; Amaratunga, G. A. J. Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix. Sol. Energ. Mat. Sol. C. 2003, 80, 465–472.CrossRefGoogle Scholar
  39. [39]
    Kymakis, E.; Amaratunga, G. A. J. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 2002, 80, 112–114.CrossRefGoogle Scholar
  40. [40]
    Ltaief, A.; Bouazizi, A.; Davenas, J. Charge transport in carbon nanotubes-polymer composite photovoltaic cells. Materials 2009, 2, 710–718.CrossRefGoogle Scholar
  41. [41]
    Heun, S.; Mahrt, R. F.; Greiner, A.; Lemmer, U.; Bassler, H.; Halliday, D. A.; Bradley, D. D. C.; Burn, P. L.; Holmes, A. B. Conformational effects in poly(p-phenylene vinylene)s revealed by low-temperature site-selective fluorescence. J. Phys.-Condens. Mat. 1993, 5, 247–260.CrossRefGoogle Scholar
  42. [42]
    Holt, J. M.; Ferguson, A. J.; Kopidakis, N.; Larsen, B. A.; Bult, J.; Rumbles, G.; Blackburn, J. L. Prolonging charge separation in P3HT-SWNT composites using highly enriched semiconducting nanotubes. Nano Lett. 2010, 10, 4627–4633.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Florian Massuyeau
    • 1
  • Yuanchun Zhao
    • 1
  • Abdel Aziz El Mel
    • 1
  • Abu Yaya
    • 1
  • Frédéric Geschier
    • 1
  • Eric Gautron
    • 1
  • Serge Lefrant
    • 1
  • Jean Yves Mevellec
    • 1
  • Chris Ewels
    • 1
  • Chain-Shu Hsu
    • 2
  • Eric Faulques
    • 1
  • Jany Wéry
    • 1
  • Jean Luc Duvail
    • 1
  1. 1.Institut des Matériaux Jean Rouxel, UMR6502 CNRSUniversité de NantesNantesFrance
  2. 2.Department of Applied ChemistryChiao Tung UniversityHsin-ChuTaiwan, China

Personalised recommendations