Nano Research

, Volume 6, Issue 1, pp 65–76 | Cite as

One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials

  • Yuxi Xu
  • Xiaoqing Huang
  • Zhaoyang Lin
  • Xing Zhong
  • Yu Huang
  • Xiangfeng Duan
Research Article


Graphene-based three-dimensional (3D) macroscopic materials have recently attracted increasing interest by virtue of their exciting potential in electrochemical energy conversion and storage. Here we report a facile one-step strategy to prepare mechanically strong and electrically conductive graphene/Ni(OH)2 composite hydrogels with an interconnected porous network. The composite hydrogels were directly used as 3D supercapacitor electrode materials without adding any other binder or conductive additives. An optimized composite hydrogel containing ∼82 wt.% Ni(OH)2 exhibited a specific capacitance of ∼1,247 F/g at a scan rate of 5 mV/s and ∼785 F/g at 40 mV/s (∼63% capacitance retention) with excellent cycling stability. The capacity of the 3D hydrogels greatly surpasses that of a physical mixture of graphene sheets and Ni(OH)2 nanoplates (∼309 F/g at 40 mV/s). The same strategy was also applied to fabricate graphene-carbon nanotube/Ni(OH)2 ternary composite hydrogels with further improved specific capacitances (∼1,352 F/g at 5 mV/s) and rate capability (∼66% capacitance retention at 40 mV/s). Both composite hydrogels obtained here can deliver high energy densities (∼43 and ∼47 Wh/kg, respectively) and power densities (∼8 and ∼9 kW/kg, respectively), making them attractive electrode materials for supercapacitor applications. This study opens a new pathway to the design and fabrication of functional 3D graphene composite materials, and can significantly impact broad areas including energy storage and beyond.


graphene Ni(OH)2 hydrogel three-dimensional supercapacitor energy storage 

Supplementary material

12274_2012_284_MOESM1_ESM.pdf (710 kb)
Supplementary material, approximately 707 KB.


  1. [1]
    Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE. 2012, 100, 1518–1534.CrossRefGoogle Scholar
  2. [2]
    Armaroli, N.; Balzani, V. Towards an electricity-powered world. Energy Environ. Sci. 2011, 4, 3193–3222.CrossRefGoogle Scholar
  3. [3]
    Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  4. [4]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  5. [5]
    Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. O.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energy Environ. Sci. 2010, 3, 1238–1251.CrossRefGoogle Scholar
  6. [6]
    Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.CrossRefGoogle Scholar
  7. [7]
    Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M., et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.CrossRefGoogle Scholar
  8. [8]
    Sun, Y. Q.; Wu, Q.; Shi, G. Q. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113–1132.CrossRefGoogle Scholar
  9. [9]
    Huang, Y.; Liang, J. J.; Chen, Y. S. An overview of the applications of graphene-based materials in supercapacitors. Small 2012, 8, 1805–1834.CrossRefGoogle Scholar
  10. [10]
    Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.CrossRefGoogle Scholar
  11. [11]
    Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.CrossRefGoogle Scholar
  12. [12]
    Yu, D. S.; Dai, L. M. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 2010, 1, 467–470.CrossRefGoogle Scholar
  13. [13]
    Wang, Y.; Shi, Z. Q.; Huang, Y.; Ma, Y. F.; Wang, C. Y.; Chen, M. M.; Chen, Y. S. Supercapacitor devices based on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107.CrossRefGoogle Scholar
  14. [14]
    Xu, Y. X.; Shi, G. Q. Assembly of chemically modified graphene: Methods and applications. J. Mater. Chem. 2011, 21, 3311–3323.CrossRefGoogle Scholar
  15. [15]
    Li, C.; Shi, G. Q. Three-dimensional graphene architectures. Nanoscale 2012, 4, 5549–5563.CrossRefGoogle Scholar
  16. [16]
    Xu, Y. X.; Wu, Q.; Sun, Y. Q.; Bai, H.; Shi, G. Q. Threedimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 2010, 4, 7358–7362.CrossRefGoogle Scholar
  17. [17]
    Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Soc. Chem. 2010, 132, 14067–14069.CrossRefGoogle Scholar
  18. [18]
    Bai, H.; Sheng, K. X.; Zhang, P. F.; Li, C.; Shi, G. Q. Graphene oxide/conducting polymer composite hydrogels. J. Mater. Chem. 2011, 21, 18653–18658.CrossRefGoogle Scholar
  19. [19]
    Chen, W. F.; Li, S. R.; Chen, C. H.; Yan, L. F. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 2011, 23, 5679–5683.CrossRefGoogle Scholar
  20. [20]
    Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Mullen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient eletrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.CrossRefGoogle Scholar
  21. [21]
    Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.CrossRefGoogle Scholar
  22. [22]
    Zhang, L.; Shi, G. Q. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 2011, 115, 17206–17212.CrossRefGoogle Scholar
  23. [23]
    Sheng, K. X.; Sun, Y. Q.; Li, C.; Yuan, W. J.; Shi, G. Q. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci. Rep. 2012, 2, 247.CrossRefGoogle Scholar
  24. [24]
    Chen, J.; Sheng, K. X.; Luo, P. H.; Li, C.; Shi, G. Q. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv. Mater. 2012, 24, 4569–4573.CrossRefGoogle Scholar
  25. [25]
    Chen, W. F.; Yan, L. F. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 2011, 3, 3132–3137.CrossRefGoogle Scholar
  26. [26]
    Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.CrossRefGoogle Scholar
  27. [27]
    Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X. L.; Mullen, K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 2012, 24, 5130–5135.CrossRefGoogle Scholar
  28. [28]
    Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 2012, 6, 3206–3213.CrossRefGoogle Scholar
  29. [29]
    Choi, B. G.; Yang, M.; Hong, W. H.; Choi, J. W.; Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 2012, 6, 4020–4028.CrossRefGoogle Scholar
  30. [30]
    Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163–3168.CrossRefGoogle Scholar
  31. [31]
    Du, F.; Yu, D. S.; Dai, L. M.; Ganguli, S.; Varshney, V.; Roy, A. K. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 2011, 23, 4810–4816.CrossRefGoogle Scholar
  32. [32]
    Wang, H. L.; Robinson, J. T.; Diankov, G.; Dai, H. J. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271.CrossRefGoogle Scholar
  33. [33]
    Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 Nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.CrossRefGoogle Scholar
  34. [34]
    Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J. Mater. Chem. 2011, 21, 7376–7380.CrossRefGoogle Scholar
  35. [35]
    Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. X. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180–8186.CrossRefGoogle Scholar
  36. [36]
    Qiu, J.; Yang, X. W.; Gou, X. L.; Yang, W. R.; Ma, Z. F.; Wallace, G. G.; Li, D. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem. Eur. J. 2010, 16, 10653–10658.CrossRefGoogle Scholar
  37. [37]
    Yan, J.; Fang, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.CrossRefGoogle Scholar
  38. [38]
    Yan, J.; Sun, W.; Wei, T.; Zhang, Q.; Fang, Z. J.; Wei, F. Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J. Mater. Chem. 2012, 22, 11494–11502.CrossRefGoogle Scholar
  39. [39]
    Lee, J. W.; Ahn, T.; Soundararajan, D.; Ko, J. M.; Kim, J. D. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem. Commun. 2011, 47, 6305–6307.CrossRefGoogle Scholar
  40. [40]
    Yang, S. B.; Wu, X. L.; Chen, C. L.; Dong, H. L.; Hu, W. P.; Wang, X. K. Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem. Commun. 2012, 48, 2773–2775.CrossRefGoogle Scholar
  41. [41]
    Chang, J.; Xu, H.; Sun, J.; Gao, L. High pseudocapacitance material prepared via in situ growth of Ni(OH)2 nanoflakes on reduced graphene oxide. J. Mater. Chem. 2012, 22, 11146–11150.CrossRefGoogle Scholar
  42. [42]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  43. [43]
    Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions. J. Am. Chem. Soc. 2009, 131, 13490–13497.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuxi Xu
    • 1
  • Xiaoqing Huang
    • 2
  • Zhaoyang Lin
    • 1
  • Xing Zhong
    • 1
  • Yu Huang
    • 2
    • 3
  • Xiangfeng Duan
    • 1
    • 3
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.California Nanosystems InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations