Advertisement

Nano Research

, Volume 6, Issue 1, pp 47–54 | Cite as

Mesoporous Co3O4 as an electrocatalyst for water oxidation

  • Harun Tüysüz
  • Yun Jeong Hwang
  • Sher Bahader Khan
  • Abdullah Mohamed Asiri
  • Peidong YangEmail author
Research Article

Abstract

Mesoporous Co3O4 has been prepared using porous silica as a hard template via a nanocasting route and its electrocatalytic properties were investigated as an oxygen evolution catalyst for the electrolysis of water. The ordered mesostructured Co3O4 shows dramatically increased catalytic activity compared to that of bulk Co3O4. Enhanced catalytic activity was achieved with high porosity and surface area, and the water oxidation overpotential (η) of the ordered mesoporous Co3O4 decreases significantly as the surface area increases. The mesoporous Co3O4 also shows excellent structural stability in alkaline media. After 100 min under 0.8 V (versus Ag/AgCl) applied bias, the sample maintains the ordered mesoporous structure with little deactivation of the catalytic properties.

Keywords

water oxidation electrocatalyst ordered mesoporous materials nanocasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_280_MOESM1_ESM.pdf (315 kb)
Supplementary material, approximately 313 KB.

References

  1. [1]
    Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 1990, 63, 988–992.CrossRefGoogle Scholar
  2. [2]
    Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.CrossRefGoogle Scholar
  3. [3]
    Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2419.CrossRefGoogle Scholar
  4. [4]
    Tüysüz, H.; Comotti, M.; Schüth, F. Ordered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation. Chem. Commun. 2008, 4022–4024.Google Scholar
  5. [5]
    Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 2005, 77, 1–45.CrossRefGoogle Scholar
  6. [6]
    Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183.CrossRefGoogle Scholar
  7. [7]
    MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4− clusters. Nature 1999, 397, 681–684.CrossRefGoogle Scholar
  8. [8]
    Martin, T.; Galarneau, A.; Di Renzo, F.; Brunel, D.; Fajula, F.; Heinisch, S.; Cretier, G.; Rocca, J. L. Great improvement of chromatographic performance using MCM-41 spheres as stationary phase in HPLC. Chem. Mater. 2004, 15, 1725–1731.CrossRefGoogle Scholar
  9. [9]
    Mellaerts, R.; Aerts, C. A.; Van Humbeeck, J.; Augustijns, P.; Van den Mooter, G.; Martens, J. A. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem. Commun. 2007, 1375–1377.Google Scholar
  10. [10]
    Yang, P. P.; Quan, Z. W.; Lu, L. L.; Huang, S. S.; Lin, J.; Fu, H. G. MCM-41 functionalized with YVO4:Eu3+: A novel drug delivery system. Nanotechnology 2007, 18, 235703.CrossRefGoogle Scholar
  11. [11]
    Hyodo, T.; Nishida, N.; Shimizu, Y.; Egashira, M. Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sensors and Actuators B 2002, 83, 209–215.CrossRefGoogle Scholar
  12. [12]
    Shenderovich, I. G.; Buntkowsky, G.; Schreiber, A.; Gedat, E.; Sharif, S.; Albrecht, J.; Golubev, N. S.; Findenegg, G. H.; Limbach, H. H. Pyridine-15N — A mobile NMR sensor for surface acidity and surface defects of mesoporous silica. J. Phys.Chem. B 2003, 107, 11924–11939.CrossRefGoogle Scholar
  13. [13]
    Fuertes, M. C.; López-Alcaraz, F. J.; Marchi, M. C.; Troiani, H. E.; Luca, V.; Míguez, H.; Soler-Illia, G. J. A. A. Photonic crystals from ordered mesoporous thin-film functional building blocks. Adv. Funct. Mater. 2007, 17, 1247–1254.CrossRefGoogle Scholar
  14. [14]
    Aznar, E.; Marcos, M. D.; Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Amorós, P.; Guillem, C. pH- and photo-switched release of guest molecules from mesoporous silica supports. J. Am. Chem. Soc. 2009, 131, 6833–6843.CrossRefGoogle Scholar
  15. [15]
    Ding, J.; Chan, K, Y.; Ren, J.; Xiao, F. S. Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions. Electrochem. Acta 2005, 50, 3131–3141.CrossRefGoogle Scholar
  16. [16]
    Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  17. [17]
    Lu, A. H.; Schmidt, W.; Matoussevitch, N.; Bönnermann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schüth, F. Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem. Int. Ed. 2004, 43, 4303–4306.CrossRefGoogle Scholar
  18. [18]
    Tüysüz, H.; Salabas, E. L.; Weidenthaler, C.; Schüth, F. Synthesis and magnetic investigation of ordered mesoporous two-line ferrihydrite. J. Am. Chem. Soc. 2008, 130, 280–287.CrossRefGoogle Scholar
  19. [19]
    Takahara, Y.; Kondo, J. N.; Takata, T.; Lu, D.; Domen, K. Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition. Chem. Mater. 2001, 13, 1194–1199.CrossRefGoogle Scholar
  20. [20]
    Noda, Y.; Lee, B.; Domen, K.; Kondo, J. N. Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation. Chem. Mater. 2008, 20, 5361–5367.CrossRefGoogle Scholar
  21. [21]
    Hisatomi, T.; Otani, M.; Nakajima, K.; Teramura, K.; Kako, Y.; Lu, D.; Takata, T.; Kondo, J. N.; Domen, K. Preparation of crystallized mesoporous Ta3N5 assisted by chemical vapor deposition of tetramethyl orthosilicate. Chem. Mater. 2010, 22, 3854–3861.CrossRefGoogle Scholar
  22. [22]
    Chen, X.; Yu, T.; Fan, X.; Zhang, H.; Li, Z.; Ye, J.; Zou, Z. Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Appl. Surf. Sci. 2007, 253, 8500–8506.CrossRefGoogle Scholar
  23. [23]
    Li, G.; Zhang, D.; Yu. J. C. Ordered mesoporous BiVO4 through nanocasting: A superior visible light-driven photocatalyst. Chem. Mater. 2008, 20, 3983–3992.CrossRefGoogle Scholar
  24. [24]
    Zhang, Z.; Zuo, F.; Feng, P. Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution. J. Mater. Chem. 2010, 20, 2206–2212.CrossRefGoogle Scholar
  25. [25]
    Kim, J. Y.; Kang, S. H.; Kim, H. S.; Sung, Y. E. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells. Langmuir 2010, 26, 2864–2870.CrossRefGoogle Scholar
  26. [26]
    Chen, X.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Ordered mesoporous SBA-15 type graphitic carbon nitride: A semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater. 2009, 21, 4093–4095.CrossRefGoogle Scholar
  27. [27]
    Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.CrossRefGoogle Scholar
  28. [28]
    Ryu, S. Y.; Balcerski, W.; Lee, T. K.; Hoffmann, M. R. Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silica. J. Phys. Chem. C 2007, 111, 18195–18203.CrossRefGoogle Scholar
  29. [29]
    Macias-Sanchez, S. A.; Nava, R.; Hernandez-Morales, V.; Acosta-Silva, Y. J.; Gomez-Herrera, L.; Pawelec, B.; Al-Zahrani, S. M.; Navarro, R. M.; Fierro, J. L. G. Cd1−xZnxS solid solutions supported on ordered mesoporous silica (SBA-15): Structural features and photocatalytic activity under visible light. Int. J. Hydrog. Energy 2012, 37, 9948–9958.CrossRefGoogle Scholar
  30. [30]
    Jiao, F.; Frei, H. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem. Commun. 2010, 46, 2920–2922.CrossRefGoogle Scholar
  31. [31]
    Jiao, F.; Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 2009, 48, 1841–1844.CrossRefGoogle Scholar
  32. [32]
    Cuk, T.; Weare, W. W.; Frei, H. Unusually long lifetime of excited charge-transfer state of all-inorganic binuclear TiOMnII unit anchored on silica nanopore surface. J. Phys. Chem. C 2010, 114, 9167–9172.CrossRefGoogle Scholar
  33. [33]
    Okamoto, A.; Nakamura, R.; Osawa, H.; Hashimoto, K. Site-specific synthesis of oxo-bridged mixed-valence binuclear complexes on mesoporous silica. Langmuir 2008, 24, 7011–7017.CrossRefGoogle Scholar
  34. [34]
    Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRefGoogle Scholar
  35. [35]
    Ikeda, S.; Takata, T.; Kondo, T.; Hitoki, G.; Hara, M.; Kondo, J. N.; Domen, K.; Hosono, H.; Kawazoe, H.; Tanaka, A. Mechano-catalytic overall water splitting. Chem. Commun. 1998, 2185–2186.Google Scholar
  36. [36]
    Takata, T.; Tanaka, A.; Hara, M.; Kondo, J. N.; Domen, K. Recent progress of photocatalysts for overall water splitting. Catal. Today 1998, 44, 17–26.CrossRefGoogle Scholar
  37. [37]
    Kim, H. G.; Hwang, D. W.; Kim, J.; Kim, Y. G.; Lee, J. S. Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem. Commun. 1999, 1077–1078.Google Scholar
  38. [38]
    Kudo, A.; Kato, H.; Nakagawa, S. Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: Factors affecting the photo-catalytic activity. J. Phys. Chem. B 2000, 104, 571–575.CrossRefGoogle Scholar
  39. [39]
    Kato, H.; Asakura, K.; Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089.CrossRefGoogle Scholar
  40. [40]
    Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245.CrossRefGoogle Scholar
  41. [41]
    Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 2005, 127, 8286–8287.CrossRefGoogle Scholar
  42. [42]
    Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.CrossRefGoogle Scholar
  43. [43]
    Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 2005, 5, 191–195.CrossRefGoogle Scholar
  44. [44]
    Cesar, I.; Kay, A.; Martinez, J. A. G.; Grätzel, M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 2006, 128, 4582–4583.CrossRefGoogle Scholar
  45. [45]
    Sivula, K.; Le Formal, F.; Gräetzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432–449.CrossRefGoogle Scholar
  46. [46]
    Tilley, S. D.; Cornuz, M.; Sivula, K.; Gräetzel, M. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 2010, 49, 6405–6408.CrossRefGoogle Scholar
  47. [47]
    Walter, M.; Warren, E. L.; Boettcher, S. W.; Mi, Q.; Mckone, J. R.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.CrossRefGoogle Scholar
  48. [48]
    Surendranath, Y.; Dincă, M.; Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 2009, 131, 2615–2620.CrossRefGoogle Scholar
  49. [49]
    Harriman, A.; Pickering, I. J.; Thomas, J. M.; Christensen, P. A. Metal oxides as heterogenous catalysts for oxygen evolution under photochemical conditions. J. Chem. Soc., Faraday Trans. 1 1988, 84, 2795–2806.CrossRefGoogle Scholar
  50. [50]
    Khan, S. U. M.; Akikusa, J. Stability and photoresponse of nanocrystelline n-TiO2 and n-TiO2/Mn2O3 thin film electrodes during water splitting reactions. J. Electrochem. Soc. 1998, 145, 89–93.CrossRefGoogle Scholar
  51. [51]
    Esswein, A.; McMurdo, M. J.; Ross, P. N.; Bell, A. T.; Tilley, T. D. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 2009, 113, 15068–15072.CrossRefGoogle Scholar
  52. [52]
    Kleitz, F.; Choi, S. H.; Ryoo, R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, 2136–2137.Google Scholar
  53. [53]
    Tüysüz, H.; Lehmann, C. W.; Bongard, H.; Tesche, B.; Schmidt, R.; Schüth, F. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. J. Am. Chem. Soc. 2008, 130, 11510–11517.CrossRefGoogle Scholar
  54. [54]
    Dong, Y. M.; He, K.; Yin, L.; Zhang, A. M. A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology 2007, 18, 435602.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Harun Tüysüz
    • 1
  • Yun Jeong Hwang
    • 1
  • Sher Bahader Khan
    • 2
  • Abdullah Mohamed Asiri
    • 2
  • Peidong Yang
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.The Center of Excellence for Advanced Materials Research (CEAMR ), Chemistry DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations