Nano Research

, Volume 6, Issue 1, pp 19–28 | Cite as

Vibrational properties of silicene and germanene

  • Emilio ScaliseEmail author
  • Michel Houssa
  • Geoffrey Pourtois
  • B. van den Broek
  • Valery Afanas’ev
  • André Stesmans
Research Article


The structural and vibrational properties of two-dimensional hexagonal silicon (silicene) and germanium (germanene) are investigated by means of first-principles calculations. It is predict that the silicene (germanene) structure with a small buckling of 0.44 Å (0.7 Å) and bond lengths of 2.28 Å (2.44 Å) is energetically the most favorable, and it does not exhibit imaginary phonon mode. The calculated non-resonance Raman spectra of silicene is characterized by a main peak at about 575 cm−1, namely the G-like peak. For germanene, the highest peak is at about 290 cm−1. Extensive calculations on armchair silicene nanoribbons and armchair germanene nanoribbons are also performed, with and without hydrogenation of the edges. The studies reveal other Raman peaks mainly distributed at lower frequencies than the G-like peak which could be attributed to the defects at the edges of the ribbons, thus not present in the Raman spectra of non-defective silicene and germanene. Particularly the Raman peak corresponding to the D mode is found to be located at around 515 cm−1 for silicene and 270 cm−1 for germanene. The calculated G-like and the D peaks are likely the fingerprints of the Raman spectra of the low-buckled structures of silicene and germanene.


silicene germanene vibrational properties Raman spectra 2D nanolattice first-principles calculation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_277_MOESM1_ESM.pdf (306 kb)
Supplementary material, approximately 304 KB.


  1. [1]
    Guzmán-Verri, G. G.; Lew Yan Voon, L. C. Electronic structure of silicon-based nanostructures. Phys. Rev. B 2007, 76, 075131.CrossRefGoogle Scholar
  2. [2]
    Lebègue, S.; Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.CrossRefGoogle Scholar
  3. [3]
    Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.CrossRefGoogle Scholar
  4. [4]
    Houssa, M.; Pourtois, G.; Afanaśev, V. V.; Stesmans, A. Electronic properties of two-dimensional hexagonal germanium. Appl. Phys. Lett. 2010, 96, 082111.CrossRefGoogle Scholar
  5. [5]
    Léandri, C.; Oughaddou, H.; Aufray, B.; Gay, J. M.; Le Lay, G.; Ranguis, A.; Garreau, Y. Growth of Si nanostructures on Ag(001). Surf. Sci. 2007, 601, 262–267.CrossRefGoogle Scholar
  6. [6]
    Léandri, C.; Le Lay, G.; Aufray, B.; Girardeaux, C.; Avila, J.; Dávila, M. E.; Asensio, M. C.; Ottaviani, C.; Cricenti, A. Self-aligned silicon quantum wires on Ag(110). Surf. Sci. 2005, 574, L9–L15.CrossRefGoogle Scholar
  7. [7]
    Le Lay, G.; Aufray, B.; Léandri, C.; Oughaddou, H.; Biberian, J. -P.; De Padova, P.; Dávila, M. E.; Ealet, B.; Kara, A. Physics and chemistry of silicene nano-ribbons. Appl. Surf. Sci. 2009, 256, 524–529.CrossRefGoogle Scholar
  8. [8]
    Kara, A.; Léandri, C.; Dávila, M. E.; De Padova, P.; Ealet, B.; Oughaddou, H.; Aufray, B.; Le Lay, G. Physics of silicene stripes. J. Supercond. Nov. Magn. 2009, 22, 259–263.CrossRefGoogle Scholar
  9. [9]
    De Padova, P.; Léandri, C.; Vizzini, S.; Quaresima, C.; Perfetti, P.; Olivieri, B.; Oughaddou, H.; Aufray, B.; Le Lay, G. Burning match oxidation process of silicon nanowires screened at the atomic scale. Nano Lett. 2008, 8, 2299–2304.CrossRefGoogle Scholar
  10. [10]
    Aufray, B.; Kara, A.; Vizzini, S.; Oughaddou, H.; Léandri, C.; Ealet, B.; Le Lay, G. Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicone. Appl. Phys. Lett. 2010, 96, 183102.CrossRefGoogle Scholar
  11. [11]
    Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.CrossRefGoogle Scholar
  12. [12]
    De Padova, P.; Quaresima, C.; Ottaviani, C.; Sheverdyaeva, P. M.; Moras, P.; Carbone, C.; Topwal, D.; Olivieri, B.; Kara, A.; Oughaddou, H.; Aufray, B.; Lay, G. L. Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett. 2010, 96, 261905.CrossRefGoogle Scholar
  13. [13]
    Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.CrossRefGoogle Scholar
  14. [14]
    Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.CrossRefGoogle Scholar
  15. [15]
    Scalise, E.; Houssa, M.; Pourtois, G.; Afanaśev, V. V.; Stesmans, A. First-principles study of strained 2D MoS2. Physica E, in press, DOI: 10.1016/j.physe.2012.07.029.Google Scholar
  16. [16]
    Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.CrossRefGoogle Scholar
  17. [17]
    Ni, Z. H.; Ponomarenko, L. A.; Nair, R. R.; Yang, R.; Anissimova, S.; Grigorieva, I. V.; Schedin, F.; Shen, Z. X.; Hill, E. H.; Novoselov, K. S.; Geim, A. K. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett. 2010, 10, 3868–3872.CrossRefGoogle Scholar
  18. [18]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I., et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009, 21, 395502.CrossRefGoogle Scholar
  19. [19]
    Bachelet, G. B.; Hamann, D. R.; Schlüter, M. Pseudopotentials that work: From H to Pu. Phys. Rev. B 1982, 26, 4199–4228.CrossRefGoogle Scholar
  20. [20]
    Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562.CrossRefGoogle Scholar
  21. [21]
    Lazzeri, M.; Mauri, F. First-principles calculation of vibrational raman spectra in large systems: Signature of small rings in crystalline SiO2. Phys. Rev. Lett. 2003, 90, 036401.CrossRefGoogle Scholar
  22. [22]
    Parker, J. H.; Feldman, D. W.; Ashkin, M. Raman scattering by silicon and germanium. Phys. Rev. 1967, 155, 712–714.CrossRefGoogle Scholar
  23. [23]
    Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290.CrossRefGoogle Scholar
  24. [24]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  25. [25]
    Samarakoon, D. K.; Wang, X. Q. Twist-boat conformation in graphene oxides. Nanoscale 2011, 3, 192–195.CrossRefGoogle Scholar
  26. [26]
    Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.CrossRefGoogle Scholar
  27. [27]
    Zhou, J.; Dong, J. M. Vibrational property and Raman spectrum of carbon nanoribbon. Appl. Phys. Lett. 2007, 91, 173108.CrossRefGoogle Scholar
  28. [28]
    Ren, W. C.; Saito, R.; Gao, L. B.; Zheng, F. W.; Wu, Z. S.; Liu, B. L.; Furukawa, M.; Zhao, J. P.; Chen, Z. P.; Cheng, H. M. Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy. Phys. Rev. B 2010, 81, 035412.CrossRefGoogle Scholar
  29. [29]
    Ryu, S.; Maultzsch, J.; Han, M. Y.; Kim, P.; Brus, L. E. Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano 2011, 5, 4123–4130.CrossRefGoogle Scholar
  30. [30]
    Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.CrossRefGoogle Scholar
  31. [31]
    Lazzeri, M.; Attaccalite, C.; Wirtz, L.; Mauri, F. Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Phys. Rev. B 2008, 78, 081406(R).CrossRefGoogle Scholar
  32. [32]
    Ding, Y.; Ni, J. Electronic structures of silicon nanoribbons. Appl. Phys. Lett. 2009, 95, 083115.CrossRefGoogle Scholar
  33. [33]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.CrossRefGoogle Scholar
  34. [34]
    Cahangirov, S.; Topsakal, M.; Ciraci, S. Armchair nanoribbons of silicon and germanium honeycomb structures. Phys. Rev. B 2010, 81, 195120.CrossRefGoogle Scholar
  35. [35]
    Koskinen, P.; Malola, S.; Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 2008, 101, 115502.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emilio Scalise
    • 1
    Email author
  • Michel Houssa
    • 1
  • Geoffrey Pourtois
    • 2
    • 3
  • B. van den Broek
    • 1
  • Valery Afanas’ev
    • 1
  • André Stesmans
    • 1
  1. 1.Semiconductor Physics Laboratory, Department of Physics and AstronomyUniversity of LeuvenLeuvenBelgium
  2. 2.IMECLeuvenBelgium
  3. 3.Department of Chemistry, PLASMANT research groupUniversity of AntwerpWilrijk-AntwerpBelgium

Personalised recommendations