Nano Research

, Volume 5, Issue 12, pp 875–887 | Cite as

Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue

Research Article

Abstract

Electrochemically functional graphene nanocomposites have been directly prepared by one-step liquid-phase exfoliation of natural flake graphite with methylene blue (MB). UV-visible spectra of the obtained aqueous dispersions of graphene-methylene blue (G-MB) nanocomposite at different exfoliation time indicate that the concentration of graphene dispersion increased markedly with increasing exfoliation time. Atomic force microscopy (AFM) and Raman spectroscopy verified that the graphene was exfoliated into single-layer or bilayer states. FT-IR spectroscopy of G-MB suggests that a π-π stacking interaction is involved in the structure-associated interactions between graphene and adsorbed MB molecules. A G-MB nanocomposite modified glassy carbon (GC) electrode exhibits excellent electrochemical properties and good electrochemical stability. Additionally, the G-MB/GC modified electrode shows more favorable electron transfer kinetics for potassium ferricyanide and potassium ferrocyanide probe molecules, which are important electroactive compounds, compared with reduced graphene oxide (RGO)-MB/GC, RGO/GC, bare GC and graphite/GC electrodes. Furthermore, the G-MB/GC modified electrode exhibits good electrocatalytic activity toward hydrogen peroxide (H2O2) and β-nicotinamide adenine dinucleotide (NADH). The excellent electroactivity, electrochemical stability and electrocatalytic activity of the G-MB nanocomposites prepared in this work are potentially very useful for basic electrochemical studies and for the practical development of electronic devices such as biosensors and photovoltaic cells.

Keywords

Graphene nanocomposite liquid-phase exfoliation methylene blue electrochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.CrossRefGoogle Scholar
  3. [3]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  4. [4]
    Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pénicaud, A. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 2008, 130, 15802–15804.CrossRefGoogle Scholar
  5. [5]
    Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A.; Stubos, A. K. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 2009, 5, 1841–1845.CrossRefGoogle Scholar
  6. [6]
    Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.CrossRefGoogle Scholar
  7. [7]
    Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.CrossRefGoogle Scholar
  8. [8]
    Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of highquality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  9. [9]
    Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  10. [10]
    Han, T. H.; Lee, W. J.; Lee, D. H.; Kim, J. E.; Choi, E. Y.; Kim, S. O. Peptide/graphene hybrid assembly into core/shell nanowires. Adv. Mater. 2010, 22, 2060–2064.CrossRefGoogle Scholar
  11. [11]
    Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 2009, 48, 4785–4787.CrossRefGoogle Scholar
  12. [12]
    Zhou, M.; Zhai, Y.; Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613.CrossRefGoogle Scholar
  13. [13]
    Jasuja, K.; Berry, V. Implantation and growth of dendritic gold nanostructures on graphene derivatives: Electrical property tailoring and Raman enhancement. ACS Nano 2009, 3, 2358–2366.CrossRefGoogle Scholar
  14. [14]
    Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Grácio, J. Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 2009, 21, 4796–4802.CrossRefGoogle Scholar
  15. [15]
    Salavagione, H. J.; Gómez, M. A.; Martínez, G. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules 2009, 42, 6331–6334.CrossRefGoogle Scholar
  16. [16]
    Zhou, X.; Wu, T.; Hu, B.; Yang, G.; Han, B. Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem. Commun. 2010, 46, 3663–3665.CrossRefGoogle Scholar
  17. [17]
    Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M. Synthesis of amphiphilic graphene nanoplatelets. Small 2009, 5, 82–85.CrossRefGoogle Scholar
  18. [18]
    Cui, X.; Zhang, C.; Hao, R.; Hou, Y. Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 2011, 3, 2118–2126.CrossRefGoogle Scholar
  19. [19]
    Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Highthroughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.CrossRefGoogle Scholar
  20. [20]
    Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 2008, 20, 6592–6594.CrossRefGoogle Scholar
  21. [21]
    Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.CrossRefGoogle Scholar
  22. [22]
    Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 20, 4490–4493.CrossRefGoogle Scholar
  23. [23]
    Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 2010, 49, 2154–2157.CrossRefGoogle Scholar
  24. [24]
    Liu, J.; Fu, S.; Yuan, B.; Li, Y.; Deng, Z. Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 2010, 132, 7279–7281.CrossRefGoogle Scholar
  25. [25]
    Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 2009, 15, 6116–6120.CrossRefGoogle Scholar
  26. [26]
    Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano. 2009, 3, 2653–2659.CrossRefGoogle Scholar
  27. [27]
    Huang, X.; Zhou, X.; Wu, S.; Wei, Y.; Qi, X.; Zhang, J.; Boey, F.; Zhang, H. Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodots to orderly patterned Au nanodot chains. Small 2010, 6, 513–516.CrossRefGoogle Scholar
  28. [28]
    Dai, B.; Fu, L.; Liao, L.; Liu, N.; Yan, K.; Chen, Y.; Liu, Z. High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res. 2011, 4, 434–439.CrossRefGoogle Scholar
  29. [29]
    Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902.CrossRefGoogle Scholar
  30. [30]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquidphase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.CrossRefGoogle Scholar
  31. [31]
    Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.CrossRefGoogle Scholar
  32. [32]
    Wang, D.; Li, Y.; Hasin, P.; Wu, Y. Preparation, characterization, and electrocatalytic performance of graphene-methylene blue thin films. Nano Res. 2011, 4, 124–130.CrossRefGoogle Scholar
  33. [33]
    Mao, K.; Wu, D.; Li, Y.; Ma, H.; Ni, Z.; Yu, H.; Luo, C.; Wei, Q.; Du, B. Label-free electrochemical immunosensor based on graphene/methylene blue nanocomposite. Anal. Biochem. 2012, 422, 22–27.CrossRefGoogle Scholar
  34. [34]
    Qin, H.; Liu, J.; Chen, C.; Wang, J.; Wang, E. An electrochemical aptasensor for chiral peptide detection using layer-by-layer assembly of polyelectrolyte-methylene blue/polyelectrolyte-graphene multilayer. Anal. Chim. Acta 2012, 712, 127–131.CrossRefGoogle Scholar
  35. [35]
    Zhang, D.; Fu, L.; Liao, L.; Dai, B.; Zou, R.; Zhang, C. Electrochemically functional graphene nanostructure and layer-by-layer nanocomposite incorporating adsorption of electroactive methylene blue. Electrochim. Acta 2012, 75, 71–79.CrossRefGoogle Scholar
  36. [36]
    Sagara, T.; Niki, K. Surface Processes and adsorption states of methylene blue at graphite electrode surfaces in an acidic medium: An electroreflectance study. Langmuir 1993, 9, 831–838.CrossRefGoogle Scholar
  37. [37]
    Yan, Y.; Zhang, M.; Gong, K.; Su, L.; Guo, Z.; Mao, L. Adsorption of methylene blue dye onto carbon nanotubes: A route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem. Mater. 2005, 17, 3457–3463.CrossRefGoogle Scholar
  38. [38]
    Liu, H.; Gao, J.; Xue, M.; Zhu, N.; Zhang, M.; Cao, T. Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with watersoluble electroactive methylene green. Langmuir 2009, 25, 12006–12010.CrossRefGoogle Scholar
  39. [39]
    Liu, N.; Fu, L.; Dai, B.; Yan, K.; Liu, X.; Zhao, R.; Zhang, Y.; Liu, Z. Universal segregation growth approach to wafer-Size graphene from non-noble metals. Nano Lett. 2011, 11, 297–303.CrossRefGoogle Scholar
  40. [40]
    Naujok, R. R.; Duevel, R. V.; Corn, R. M. Fluorescence and fourier transform surface-enhanced Raman scattering measurements of methylene blue adsorbed onto a sulfurmodified gold electrode. Langmuir 1993, 9, 1771–1774.CrossRefGoogle Scholar
  41. [41]
    Xiao, G. N.; Man, S. Q. Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem. Phys. Lett. 2007, 447, 305–309.CrossRefGoogle Scholar
  42. [42]
    Paek, S. M.; Yoo, E. J.; Honma, I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009, 9, 72–75.CrossRefGoogle Scholar
  43. [43]
    Szabó, T.; Berkesi, O.; Dékány, I. DRIFT study of deuteriumexchanged graphite oxide. Carbon 2005, 43, 3186–3189.CrossRefGoogle Scholar
  44. [44]
    Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefGoogle Scholar
  45. [45]
    Manna, A. K.; Pati, S. K. Tuning the electronic structure of graphene by molecular charge transfer: A computational study. Chem. Asian J. 2009, 4, 855–860.CrossRefGoogle Scholar
  46. [46]
    Bard, A. J.; Faulkner, L. R. Electrochemical methods: Fundamentals and Applications. 2nd ed.; John Wiley & Sons, Inc.: New York, 2001.Google Scholar
  47. [47]
    Shang, N. G.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stamboulis, A.; Potenza, A.; Dhesi, S. S.; Marchetto, H. Catalyst-free Efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 2008, 18, 3506–3514.CrossRefGoogle Scholar
  48. [48]
    Zhang, M.; Gorski, W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J. Am. Chem. Soc. 2005, 127, 2058–2059.CrossRefGoogle Scholar
  49. [49]
    Zhang, D.; Peng, Y.; Qi, H.; Gao, Q.; Zhang, C. Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers. Sens. Actuator, B-Chem 2009, 136, 113–121.CrossRefGoogle Scholar
  50. [50]
    Li, W.; Tan, C.; Lowe, M. A.; Abruña, H. D.; Ralph, D. C. Electrochemistry of individual monolayer graphene Sheets. ACS Nano 2011, 5, 2264–2270.CrossRefGoogle Scholar
  51. [51]
    Brownson, D. A. C.; Kampouris, D. K.; Banks, C. E. Graphene electrochemistry: Fundamental concepts through to prominent applications. Chem. Soc. Rev. 2012, 41, 6944–6976.CrossRefGoogle Scholar
  52. [52]
    Zhou, M.; Shang, L.; Li, B.; Huang, L.; Dong, S. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Biosens. Bioelectron. 2008, 24, 442–447.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of MedicineXi’an Jiaotong UniversityXi’anChina
  2. 2.College of Chemistry and Molecular ScienceWuhan UniversityWuhanChina
  3. 3.Center for Nanochemistry (CNC), Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
  4. 4.Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShanxi Normal UniversityXi’anChina

Personalised recommendations