Advertisement

Repair and stabilization in confined nanoscale systems — inorganic nanowires within single-walled carbon nanotubes

Abstract

Repair is ubiquitous in biological systems, but rare in the inorganic world. We show that inorganic nanoscale systems can however possess remarkable repair and reconfiguring capabilities when subjected to extreme confinement. Confined crystallization inside single-walled carbon nanotube (SWCNT) templates is known to produce the narrowest inorganic nanowires, but little is known about the potential for repair of such nanowires once crystallized, and what can drive it. Here inorganic nanowires encapsulated within SWCNTs were seen by high-resolution transmission electron microscopy to adjust to changes in their nanotube template through atomic rearrangement at room temperature. These observations highlight nanowire repair processes, supported by theoretical modeling, that are consistent with atomic migration at fractured, ionic ends of the nanowires encouraged by long-range force fields, as well as release-blocking mechanisms where nanowire atoms bind to nanotube walls to stabilize the ruptured nanotube and allow the nanowire to reform. Such principles can inform the design of nanoscale systems with enhanced resilience.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. [1]

    Meyer, R. R.; Sloan, J.; Dunin-Borkowski, R. E.; Kirkland, A. I.; Novotny, M. C.; Bailey, S. R.; Hutchison, J. L.; Green, M. L. H. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 2000, 289, 1324–1326.

  2. [2]

    Ilie, A.; Bendall, J. S.; Nagaoka, K.; Egger, S.; Nakayama, T.; Crampin, S. Encapsulated inorganic nanostructures; A route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes. ACS Nano 2011, 5, 2559–2569.

  3. [3]

    Bishop, C. L.; Wilson, M. The filling of flexible carbon nanotubes by molten salts. J. Mater. Chem. 2009, 19, 2929–2939.

  4. [4]

    Chamberlain, T. W.; Meyer, J. C.; Biskupek, J.; Leschner, J.; Santana, A.; Besley, N. A.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A. N. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. Nat. Chem. 2011, 3, 732–737.

  5. [5]

    Chen, W.; Pan, X. L.; Willinger, M. -G.; Su, D. S.; Bao, X. H. Facile autoreduction of iron oxide/carbon nanotube encapsulates. J. Am. Chem. Soc. 2006, 128, 3136–3137.

  6. [6]

    Zoberbier, T.; Chamberlain, T. W.; Biskupek, J.; Kuganathan, N.; Eyhusen, S.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A. N. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale. J. Am. Chem. Soc. 2012, 134, 3073–3079.

  7. [7]

    Börrnert, F.; Gorantla, S.; Bachmatiuk, A.; Warner, J. H.; Ibrahim, I.; Thomas, J.; Gemming, T.; Eckert, J.; Cuniberti, G.; Büchner, B., et al. In situ observations of self-repairing single-walled carbon nanotubes. Phys. Rev. B 2010, 81, 201401.

  8. [8]

    Suenaga, K.; Wakabayashi, H.; Koshino, M.; Sato, Y.; Urita, K.; Iijima, S. Imaging active topological defects in carbon nanotubes. Nat. Nanotechnol. 2007, 2, 358–360.

  9. [9]

    Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 2004, 430, 870–873.

  10. [10]

    Ding, F.; Jiao, K.; Wu, M. Q.; Yakobson, B. I. Pseudoclimb and dislocation dynamics in superplastic nanotubes. Phys. Rev. Lett. 2007, 98, 075503.

  11. [11]

    Kotakoski, J.; Krasheninnikov, A. V.; Nordlund, K. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes; Atomistic simulations. Phys. Rev. B 2006, 74, 245420.

  12. [12]

    Warner, J. H.; Schäffel, F.; Zhong, G. F.; Rümmeli, M. H.; Buchner, B.; Robertson, J.; Briggs, G. A. D. Investigating the diameter-dependent stability of single-walled carbon nanotubes. ACS Nano 2009, 3, 1557–1563.

  13. [13]

    Bendall, J. S.; Ilie, A.; Welland, M. E.; Sloan, J.; Green, M. L. H. Thermal stability and reactivity of metal halide filled single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 6569–6573.

  14. [14]

    Guan, L. H.; Suenaga, K.; Shi, Z. J.; Gu, Z. N.; Iijima, S. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett. 2007, 7, 1532–1535.

  15. [15]

    Smith, B. W.; Luzzi, D. E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 2001, 90, 3509–3515.

  16. [16]

    Kobayashi, K.; Suenaga, K.; Saito, T.; Shinohara, H.; Iijima, S. Photoreactivity preservation of AgBr nanowires in confined nanospaces. Adv. Mater. 2010, 22, 3156–3160.

  17. [17]

    Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1221.

  18. [18]

    Costa, P. M. F. J.; Golberg, D.; Mitome, M.; Hampel, S.; Leonhardt, A.; Buchner, B.; Bando, Y. Stepwise current-driven release of attogram quantities of copper iodide encapsulated in carbon nanotubes. Nano Lett. 2008, 8, 3120–3125.

  19. [19]

    Baldoni, M.; Leoni, S.; Sgamellotti, A.; Seifert, G.; Mercuri, F. Formation, structure, and polymorphism of novel lowest-dimensional AgI nanoaggregates by encapsulation in carbon nanotubes. Small 2007, 3, 1730–1734.

  20. [20]

    Gan, Y. J.; Sun, L. T.; Banhart, F. One- and two-dimensional diffusion of metal atoms in graphene. Small 2008, 4, 587–591.

  21. [21]

    Krasheninnikov, A. V.; Lehtinen, P. O.; Foster, A. S.; Pyykkö, P.; Nieminen, R. M. Embedding transition-metal atoms in graphene; Structure, bonding, and magnetism. Phys. Rev. Lett. 2009, 102, 126807.

  22. [22]

    Warner, J. H.; Ito, Y.; Rümmeli, M. H.; Büchner, B.; Shinohara, H.; Briggs, G. A. D. Capturing the motion of molecular nanomaterials encapsulated within carbon nano-tubes with ultrahigh temporal resolution. ACS Nano 2009, 3, 3037–3044.

  23. [23]

    Koshino, M.; Solin, N.; Tanaka, T.; Isobe, H.; Nakamura, E. Imaging the passage of a single hydrocarbon chain through a nanopore. Nat. Nanotechnol. 2008, 3, 595–597.

  24. [24]

    Rodriguez-Manzo, J. A.; Cretu, O.; Banhart, F. Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano 2010, 4, 3422–3428.

  25. [25]

    Ilie, A.; Egger, S.; Friedrichs, S.; Kang, D. J.; Green, M. L. H. Correlated transport and high resolution transmission electron microscopy investigations on inorganic-filled single-walled carbon nanotubes showing negative differential resistance. Appl. Phys. Lett. 2007, 91, 253124.

  26. [26]

    Zobelli, A.; Gloter, A.; Ewels, C. P.; Colliex, C. Shaping single walled nanotubes with an electron beam. Phys. Rev. B 2008, 77, 045410.

  27. [27]

    Rodriguez-Manzo, J. A.; Banhart, F. Creation of individual vacancies in carbon nanotubes by using an electron beam of 1 Å diameter. Nano Lett. 2009, 9, 2285–2289.

  28. [28]

    Sloan, J.; Wright, D. M.; Woo, H. G.; Bailey, S.; Brown, G.; York, A. P. E.; Coleman, K. S.; Hutchison, J. L.; Green, M. L. H. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun. 1999, 699–700.

  29. [29]

    CrystalMaker, 2.0; CrystalMaker Software; Oxford, 2006.

  30. [30]

    Stadelmann, P. JEMS, Interdisciplinary Centre for Electron Microscopy; EPFL, 2010.

  31. [31]

    Gömez-Rodríguez, A.; Beltrán-del-Río, L. M.; Herrera-Becerra, R. Simula TEM; Multislice simulations for general objects. Ultramicroscopy 2010, 110, 95–104.

  32. [32]

    Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570.

  33. [33]

    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

  34. [34]

    Hull, S.; Keen, D. A. Pressure-induced phase transitions in AgCl, AgBr, and AgI. Phys. Rev. B 1999, 59, 750–761.

  35. [35]

    Parrinello, M.; Rahman, A.; Vashishta, P. Structural transitions in superionic conductors. Phys. Rev. Lett. 1983, 50, 1073–1076.

  36. [36]

    Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991–7000.

Download references

Author information

Correspondence to Adelina Ilie.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ilie, A., Crampin, S., Karlsson, L. et al. Repair and stabilization in confined nanoscale systems — inorganic nanowires within single-walled carbon nanotubes. Nano Res. 5, 833–844 (2012). https://doi.org/10.1007/s12274-012-0267-5

Download citation

Keywords

  • Filled carbon nanotubes
  • nanowires
  • repair
  • high-resolution transmission electron microscopy (HRTEM)
  • density functional theory
  • molecular dynamics