Nano Research

, Volume 5, Issue 10, pp 710–717 | Cite as

Characteristics and effects of diffused water between graphene and a SiO2 substrate

  • Mi Jung Lee
  • Jin Sik Choi
  • Jin-Soo Kim
  • Ik-Su Byun
  • Duk Hyun Lee
  • Sunmin Ryu
  • Changgu Lee
  • Bae Ho Park
Research Article


The graphene/SiO2 system is a promising building block for next-generation electronic devices, integrating the high electromagnetic performance of graphene with the mature technology of Si-based electronic devices. It is well known that the electromagnetic performance of graphene/SiO2 is dramatically reduced by structural defects, such as wrinkles and folding, which are suspected to result from water droplets. Therefore, understanding water diffusion between graphene and SiO2 is required for controlling structural defects and thus improving the electromagnetic performance of this system. Although the behavior of water between graphene and atomically flat mica has been investigated, the characteristics and effects of diffused water between graphene and SiO2 remain unidentified. We have investigated water diffusion between monolayer graphene and SiO2 under high humidity conditions using atomic force microscopy. For a relative humidity of over 90%, water diffuses into graphene/SiO2 and forms an ice-like structure up to two layers thick. Liquid-like water can further diffuse in, stacking over the ice-like layer and evaporating relatively easily in the air causing graphene to wrinkle and fold. By similarly investigating water diffusion between graphene and mica, we argue that water-induced wrinkle formation depends on the hydrophilicity and roughness of the substrate.


Graphene water diffusion ice-like structure high humidity wrinkle SiO2 mica hydrophilicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_255_MOESM1_ESM.pdf (465 kb)
Supplementary material, approximately 465 KB.


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.CrossRefGoogle Scholar
  3. [3]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 2006, 97, 016801.Google Scholar
  4. [4]
    Fasolino, A.; Los, J. H.; Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861.CrossRefGoogle Scholar
  5. [5]
    Choi, J. S.; Kim, J. S.; Byun, I. S.; Lee, D. H.; Lee, M. J.; Park, B. H.; Lee, C.; Yoon, D.; Cheong, H.; Lee, K. H.; Sin, Y. W.; Park, J. Y.; Salmeron, M. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science 2011, 333, 607–610.CrossRefGoogle Scholar
  6. [6]
    Xu, K.; Cao, P. G.; Heath, J. R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett. 2009, 9, 4446–4451.CrossRefGoogle Scholar
  7. [7]
    Zhang, Y. B.; Brar, V. W.; Girit, C.; Zettl, A.; Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 2009, 5, 722–726.CrossRefGoogle Scholar
  8. [8]
    Patra, N.; Wang, B. Y.; Kral, P. Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 2009, 9, 3766–3771.CrossRefGoogle Scholar
  9. [9]
    Wu, Y. Q.; Lin, Y. M.; Bol, A. A.; Jenkins, K. A.; Xia, F. N.; Farmer, D. B.; Zhu, Y.; Avouris, P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 2011, 472, 74–78.CrossRefGoogle Scholar
  10. [10]
    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.CrossRefGoogle Scholar
  11. [11]
    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.CrossRefGoogle Scholar
  12. [12]
    Wehling, T. O.; Lichetenstein, A. I.; Katsnelson, M. I. First-principles studies of water adsorption on graphene: The role of the substrate. Appl. Phys. Lett. 2008, 93, 202110.CrossRefGoogle Scholar
  13. [13]
    Shim, J.; Lui, C. H.; Ko, T. Y.; Yu, Y. J.; Kim, P.; Heinz, T. F.; Ryu, S. Water-gated charge doping of graphene induced by mica substrates. Nano Lett. 2012, 12, 648–654CrossRefGoogle Scholar
  14. [14]
    Stolyarova, E.; Stolyarova, D.; Bolotin, K.; Ryu, S.; Liu, L.; Rim, K. T.; Klima, M.; Hybertsen, M.; Pogorelsky, I.; Pavlishin, I.; Kusche, K.; Hone, J. Kim, P.; Stormer, H. L.; Yakimenko, V.; Flynn, G. Observation of graphene bubbles and effective mass transport under graphene films. Nano Lett. 2009, 9, 332–337.CrossRefGoogle Scholar
  15. [15]
    Xu, K.; Cao, P. G.; Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 2010, 329, 1188–1191.CrossRefGoogle Scholar
  16. [16]
    Severin, N.; Lange, P.; Sokolov, I. M.; Rabe, J. P. Reversible dewetting of a molecularly thin fluid water film in a soft graphene-mica slit pore. Nano Lett. 2012, 12, 774–779.CrossRefGoogle Scholar
  17. [17]
    Park, J. H.; Aluru, N. R. Ordering-induced fast diffusion of nanoscale water film on graphene. J. Phys. Chem. C. 2010, 114, 2595–2599.CrossRefGoogle Scholar
  18. [18]
    Hu, J.; Xiao, X. D.; Ogletree, D. F.; Salmeron, M. Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science 1995, 268, 267–269.CrossRefGoogle Scholar
  19. [19]
    Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.CrossRefGoogle Scholar
  20. [20]
    Park, J. H.; Aluru, N. R. Diffusion of water submonolayers on hydrophilic surfaces. Appl. Phys. Lett. 2008, 93, 253104.CrossRefGoogle Scholar
  21. [21]
    Cao, P. G.; Xu, K.; Varghese, J. O.; Heath, J. R. The microscopic structure of adsorbed water on hydrophobic surfaces under ambient conditions. Nano Lett. 2011, 11, 5581–5586.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mi Jung Lee
    • 1
  • Jin Sik Choi
    • 1
  • Jin-Soo Kim
    • 1
  • Ik-Su Byun
    • 1
  • Duk Hyun Lee
    • 1
  • Sunmin Ryu
    • 2
  • Changgu Lee
    • 3
  • Bae Ho Park
    • 1
  1. 1.Division of Quantum Phases & Devices, Department of PhysicsKonkuk UniversitySeoulKorea
  2. 2.Department of Applied ChemistryKyung Hee UniversityYongin, GyeonggiKorea
  3. 3.Department of Mechanical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations