Advertisement

Nano Research

, Volume 5, Issue 10, pp 703–709 | Cite as

Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos

  • Xiang Zhou
  • Fabrice Laroche
  • Gerda E. M. Lamers
  • Vincenzo Torraca
  • Patrick Voskamp
  • Tao Lu
  • Fuqiang Chu
  • Herman P. SpainkEmail author
  • Jan Pieter AbrahamsEmail author
  • Zunfeng LiuEmail author
Research Article

Abstract

Efficient DNA delivery is essential for introducing new genes into living cells. However, effective virus-based systems carry risks and efficient synthetic systems that are non-toxic remain to be discovered. The bottle-neck in synthetic systems is cytotoxicity, caused by the high concentration of DNA-condensing compounds required for efficient uptake of DNA. Here we report a polyethyleneimine (PEI) grafted ultra-small graphene oxide (PEI-g-USGO) for transfection. By removing the free PEI and ensuring a high PEI density on small sized graphene, we obtained very high transfection efficiencies combined with very low cytotoxicity. Plasmid DNA could be transfected into mammalian cell lines with up to 95% efficiency and 90% viability. Transfection in zebrafish embryos was 90%, with high viability, compared to efficiencies of 30% or lower for established transfection technologies. This result suggests a novel approach to the design of synthetic gene delivery vehicles for research and therapy.

Keywords

Gene delivery graphene DNA Gene expression zebrafish 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_254_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.08 MB.

References

  1. [1]
    Mastrobattista, E.; van der Aa, M. A. E. M.; Hennink, W. E.; Crommelin, D. J. A. Artificial viruses: A nanotechnological approach to gene delivery. Nat. Rev. Drug Discov. 2006, 5, 115–121.CrossRefGoogle Scholar
  2. [2]
    Putnam, D. Polymers for gene delivery across length scales. Nat. Mater. 2006, 5, 439–451.CrossRefGoogle Scholar
  3. [3]
    Kunath, K.; von Harpe, A.; Fischer, D.; Peterson, H.; Bickel, U.; Voigt, K.; Kissel, T. Low-molecular-weight polyethy-lenimine as a non-viral vector for DNA delivery: Comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release 2003, 89, 113–125.CrossRefGoogle Scholar
  4. [4]
    Ogris, M.; Steinlein, P.; Kursa, M.; Mechtler, K.; Kircheis, R.; Wagner, E. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 1998, 5, 1425–1433.CrossRefGoogle Scholar
  5. [5]
    Lungwitz, U.; Breunig, M.; Blunk, T.; Göpferich, A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 2005, 60, 247–266.CrossRefGoogle Scholar
  6. [6]
    Godbey, W. T.; Wu, K. K.; Mikos, A. G. Size matters: Molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res. 1999, 45, 268–275.CrossRefGoogle Scholar
  7. [7]
    Behr, J. P. The proton sponge: A trick to enter cells the viruses did not exploit. Chimia 1997, 51, 34–36.Google Scholar
  8. [8]
    Sonawane, N. D.; Szoka, F. C.; Verkman, A. S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 2003, 278, 44826–44831.CrossRefGoogle Scholar
  9. [9]
    Clamme, J. P.; Azoulay, J.; Mely, Y. Monitoring of the formation and dissociation of polyethylenimine/DNA complexes by two photon fluorescence correlation spectroscopy. Biophys. J. 2003, 84, 1960–1968.CrossRefGoogle Scholar
  10. [10]
    Boeckle, S.; von Gersdorff, K.; van der Piepen, S.; Culmsee, C.; Wagner, E.; Ogris, M. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J. Gene Med. 2004, 6, 1102–1111.CrossRefGoogle Scholar
  11. [11]
    Boeckle, S.; Fahrmeir, J.; Roedl, W.; Ogris, M.; Wagner, E. Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J. Control. Release 2006, 112, 240–248.CrossRefGoogle Scholar
  12. [12]
    Zintchenko, A.; Philipp, A.; Dehshahri, A.; Wagner, E. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjugate Chem. 2008, 19, 1448–1455.CrossRefGoogle Scholar
  13. [13]
    Zhang, L. M.; Lu, Z. X.; Zhao, Q. H.; Huang, J.; Shen, H.; Zhang, Z. J. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 2011, 7, 460–464.CrossRefGoogle Scholar
  14. [14]
    Yang, K.; Wan, J. M.; Zhang, S. A.; Zhang, Y. J.; Lee, S. T.; Liu, Z. A. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 2011, 5, 516–522.CrossRefGoogle Scholar
  15. [15]
    Chen, B. A.; Liu, M.; Zhang, L. M.; Huang, J.; Yao, J. L.; Zhang, Z. J. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J. Mater. Chem. 2011, 21, 7736–7741.CrossRefGoogle Scholar
  16. [16]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.CrossRefGoogle Scholar
  17. [17]
    Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010, 22, 734–738.CrossRefGoogle Scholar
  18. [18]
    Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photo-thermal therapy. J. Am. Chem. Soc. 2011, 133, 6825–6831.CrossRefGoogle Scholar
  19. [19]
    Moghimi, S. M.; Symonds, P.; Murray, J. C.; Hunter, A. C.; Debska, G.; Szewczyk, A. A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy. Mol. Ther. 2005, 11, 990–995.CrossRefGoogle Scholar
  20. [20]
    Gerlai, R. Zebrafish: An uncharted behavior genetic model. Behav. Genet. 2003, 33, 461–468.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiang Zhou
    • 1
    • 3
  • Fabrice Laroche
    • 4
    • 5
  • Gerda E. M. Lamers
    • 4
  • Vincenzo Torraca
    • 4
  • Patrick Voskamp
    • 1
  • Tao Lu
    • 3
  • Fuqiang Chu
    • 2
  • Herman P. Spaink
    • 4
    • 5
    Email author
  • Jan Pieter Abrahams
    • 1
    Email author
  • Zunfeng Liu
    • 1
    • 2
    • 6
    Email author
  1. 1.Biophysical Structural Chemistry, Cell ObservatoryLeiden Institute of ChemistryLeidenthe Netherlands
  2. 2.School of pharmaceutical engineering and life scienceChangzhou UniversityChangzhouChina
  3. 3.State Key Laboratory of Natural Medicines, Department of Organic ChemistryChina Pharmaceutical UniversityNanjingChina
  4. 4.The Institute of Biology Leiden, Gorlaeus LaboratoriaLeiden UniversityLeidenthe Netherlands
  5. 5.Department of Molecular Biology and GeneticsAarhus University, Centre for Carbohydrate Recognition and Signalling (CARB)Aarhus CDenmark
  6. 6.Biomedical Research CenterJiangnan Graphene Research InstituteChangzhouChina

Personalised recommendations