Nano Research

, Volume 5, Issue 9, pp 605–617 | Cite as

Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading

  • Huanlei Wang
  • Chris M. B. Holt
  • Zhi Li
  • Xuehai Tan
  • Babak Shalchi Amirkhiz
  • Zhanwei Xu
  • Brian C. Olsen
  • Tyler Stephenson
  • David Mitlin
Research Article


A high performance asymmetric electrochemical supercapacitor with a mass loading of 10 mg·cm−2 on each planar electrode has been fabricated by using a graphene-nickel cobaltite nanocomposite (GNCC) as a positive electrode and commercial activated carbon (AC) as a negative electrode. Due to the rich number of faradaic reactions on the nickel cobaltite, the GNCC positive electrode shows significantly higher capacitance (618 F·g−1) than graphene-Co3O4 (340 F·g−1) and graphene-NiO (375 F·g−1) nanocomposites synthesized under identical conditions. More importantly, graphene greatly enhances the conductivity of nickel cobaltite and allows the positive electrode to charge/discharge at scan rates similar to commercial AC negative electrodes. This improves both the energy density and power density of the asymmetric cell. The asymmetric cell composed of 10 mg GNCC and 30 mg AC displayed an energy density in the range of 19.5 Wh·kg−1 with an operational voltage of 1.4 V. At high sweep rate, the system is capable of delivering an energy density of 7.6 Wh·kg−1 at a power density of about 5600 W·kg−1. Cycling results demonstrate that the capacitance of the cell increases to 116% of the original value after the first 1600 cycles due to a progressive activation of the electrode, and maintains 102% of the initial value after 10000 cycles.


Graphene nickel cobaltite (NiCo2O4supercapacitor energy density power density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_246_MOESM1_ESM.pdf (404 kb)
Supplementary material, approximately 403 KB.


  1. [1]
    Conway, B. E. Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum: New York, 1999.Google Scholar
  2. [2]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  3. [3]
    Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychose, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.CrossRefGoogle Scholar
  4. [4]
    Hall, P. J.; Mirzaeian, M.; Isobel Fletcher, S.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. O.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energy Environ. Sci. 2010, 3, 1238–1251.CrossRefGoogle Scholar
  5. [5]
    Long, J. W.; Bélanger, D.; Brousse, T.; Sugimoto, W.; Sassin, M. B.; Crosnier, O. Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes. MRS Bull. 2011, 36, 513–522.CrossRefGoogle Scholar
  6. [6]
    Demarconnay, L.; Raymundo-Piñero, E.; Béguin, F. Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor. J. Power Sources 2011, 196, 580–586.CrossRefGoogle Scholar
  7. [7]
    Qu, Q.; Zhang, P.; Wang, B.; Chen, Y.; Tian, S.; Wu, Y.; Holze, R. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 2009, 113, 14020–14027.CrossRefGoogle Scholar
  8. [8]
    Chen, P. C.; Shen, G.; Shi, Y.; Chen, H.; Zhou, C. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403–4411.CrossRefGoogle Scholar
  9. [9]
    Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.CrossRefGoogle Scholar
  10. [10]
    Brousse, T.; Taberna, P. L.; Crosnier, O.; Dugas, R.; Guillemet, P.; Scudeller, Y.; Zhou, Y.; Favier, F.; Bélanger, D.; Simon, P. Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemcial supercapacitor. J. Power Sources 2007, 173, 633–641.CrossRefGoogle Scholar
  11. [11]
    Wang, H.; Gao, Q.; Hu, J. Asymmetric capacitor based on superior porous Ni-Zn-Co oxide/hydroxide and carbon electrode. J. Power Sources 2010, 195, 3017–3024.CrossRefGoogle Scholar
  12. [12]
    Du, X.; Wang, C.; Chen, M.; Jiao, Y.; Wang, J. Electro-chemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J. Phys. Chem. C 2009, 113, 2643–2646.CrossRefGoogle Scholar
  13. [13]
    Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 2007, 47, 373–376.CrossRefGoogle Scholar
  14. [14]
    Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.CrossRefGoogle Scholar
  15. [15]
    Rose, M.; Korenblit, Y.; Kockrick, E.; Borchardt, L.; Oschatz, M.; Kaskel, S.; Yushin, G. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 2011, 7, 1108–1117.CrossRefGoogle Scholar
  16. [16]
    Hulicova-Jurcakova, D.; Puziy, A. M.; Poddubnaya, O. I.; Suárez-García, F.; Tascón, J. M. D.; Lu, G. Q. Highly stable performance of supercapacitors from phosphous-enriched carbons. J. Am. Chem. Soc. 2009, 131, 5026–5027.CrossRefGoogle Scholar
  17. [17]
    Hu, C. C.; Chen, W. C.; Chang, K. H. How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J. Electrochem. Soc. 2004, 151, A281–A290.CrossRefGoogle Scholar
  18. [18]
    Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C. Y.; Zhang, K.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.CrossRefGoogle Scholar
  19. [19]
    Zhang, L.; Holt, C. M. B.; Luber, E. J.; Olsen, B. C.; Wang, H.; Danaie, M.; Cui, X.; Tan, X.; Liu, V. W.; Kalisvaart, W. P.; Mitlin, D. High rate electrochemical capacitors from three-dimensional arrays of vanadium nitride functionalized carbon nanotubes. J. Phys. Chem. C 2011, 115, 23381–24393.CrossRefGoogle Scholar
  20. [20]
    Wang, H.; Zhang, L.; Tan, X.; Holt, C. M. B.; Zahiri, B.; Olsen, B. C.; Mitlin, D. Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures. J. Phys. Chem. C 2011, 115, 17599–17605.CrossRefGoogle Scholar
  21. [21]
    Wei, T. Y.; Chen, C. H.; Chang, K. H.; Lu, S. Y.; Hu, C. C. Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem. Mater. 2009, 21, 3228–3233.CrossRefGoogle Scholar
  22. [22]
    Lei, Y.; Daffos, B.; Taberna, P. L.; Simon, P.; Favier, F. MnO2-coated Ni nanorods: Enhanced high rate behavior in pseudo-capacitive supercapacitor. Electrochim. Acta 2010, 55, 7454–7459.CrossRefGoogle Scholar
  23. [23]
    Zhu, J. W.; Chen, S.; Zhou, H.; Wang, X. Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance. Nano Res. 2012, 5, 11–19.CrossRefGoogle Scholar
  24. [24]
    Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.CrossRefGoogle Scholar
  25. [25]
    Liu, X.; Pickup, P. G. Carbon fabric supported manganese and ruthenium oxide thin films for supercapacitors. J. Electrochem. Soc. 2011, 158, A241–A249.CrossRefGoogle Scholar
  26. [26]
    Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.CrossRefGoogle Scholar
  27. [27]
    Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.CrossRefGoogle Scholar
  28. [28]
    Lei, Z.; Lu, L.; Zhao, X. S. The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ. Sci. 2012, 5, 6391–6399.CrossRefGoogle Scholar
  29. [29]
    Chen, S.; Zhu, J.; Wang, X. One-step synthesis of graphenecobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C 2010, 114, 11829–11834.CrossRefGoogle Scholar
  30. [30]
    Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.CrossRefGoogle Scholar
  31. [31]
    Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010, 48, 487–493.CrossRefGoogle Scholar
  32. [32]
    Lv, W.; Sun, F.; Tang, D. M.; Fang, H. T.; Liu, C.; Yang, Q. H.; Cheng, H. M. A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J. Mater. Chem. 2011, 21, 9014–9019.CrossRefGoogle Scholar
  33. [33]
    Zhou, W.; Liu, J.; Chen, T.; Tan, K. S.; Jia, X.; Luo, Z.; Cong, C.; Yang, H.; Li, C. M.; Yu, T. Fabrication of Co3O4-reduced graphene oxide scrolls for high-perfromance supercapacitor electrodes. Phys. Chem. Chem. Phys. 2011, 13, 14462–14465.CrossRefGoogle Scholar
  34. [34]
    Yan, J.; Wei, T.; Qiao, W.; Shao, B.; Zhao, Q.; Zhang, L.; Fan, Z. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 2010, 55, 6973–6978.CrossRefGoogle Scholar
  35. [35]
    Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater. 2010, 22, 347–351.CrossRefGoogle Scholar
  36. [36]
    Wang, H.; Gao, Q.; Jiang, L. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 2011, 7, 2454–2459.Google Scholar
  37. [37]
    Wang, H. W.; Hu, Z. A.; Chang, Y. Q.; Chen, Y. L.; Wu, H. Y.; Zhang, Z. Y.; Yang, Y. Y. Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors. J. Mater. Chem. 2011, 21, 10504–10511.CrossRefGoogle Scholar
  38. [38]
    Wu, Z. S.; Ren, W.; Wang, D. W.; Li, F.; Liu, B.; Cheng, H. M. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 2010, 4, 5835–5842.CrossRefGoogle Scholar
  39. [39]
    Zhang, J.; Jiang, J.; Li, H.; Zhao, X. S. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 2011, 4, 4009–4015.CrossRefGoogle Scholar
  40. [40]
    Hu, L.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L. F.; Cui. Y. Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. USA. 2009, 106, 21490–21494.CrossRefGoogle Scholar
  41. [41]
    Yang, L.; Cheng, S.; Ding, Y.; Zhu, X.; Wang, Z. L.; Liu, M. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett. 2012, 12, 321–325.CrossRefGoogle Scholar
  42. [42]
    Lu, Z.; Yang, Q.; Zhu, W.; Chang, Z.; Liu, J.; Sun, X.; Evans, D. G.; Duan, X. Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 2012, 5, 369–378.CrossRefGoogle Scholar
  43. [43]
    Stoller, M. D.; Ruoff, R. S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 2010, 3, 1294–1301.CrossRefGoogle Scholar
  44. [44]
    Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.CrossRefGoogle Scholar
  45. [45]
    Kim, U. J.; Furtado, C. A.; Liu, X.; Chen, G.; Eklund, P. C. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 15437–15445.CrossRefGoogle Scholar
  46. [46]
    Mishra, A. K.; Ramaprabhu, S. Functionalized graphene-based nanocomposites for supercapacitor application. J. Phys. Chem. C 2011, 115, 14006–14013.CrossRefGoogle Scholar
  47. [47]
    Cabo, M.; Pellicer, E.; Rossinyol, E.; Estrader, M.; López-Ortega, A.; Nogués, J.; Castell, O.; Suriñach, S.; Baró, M. D. Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties. J. Mater. Chem. 2010, 20, 7021–7028.CrossRefGoogle Scholar
  48. [48]
    Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E.; Berry, F. J. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 2000, 153, 74–81.CrossRefGoogle Scholar
  49. [49]
    Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E. I.; Palmer, H. M.; Greaves, C.; Berry, F. J. Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. J. Mater. Chem. 2001, 11, 3087–3093.CrossRefGoogle Scholar
  50. [50]
    Zhu, J.; Gao, Q. Mesoporous MCo2O4 (M = Cu, Mn, and Ni) spinels: Structural replication, characterization and catalytic application in CO oxidation. Microporous. Mesoporous. Mat. 2009, 124, 144–152.CrossRefGoogle Scholar
  51. [51]
    Tian, L.; Zou, H.; Fu, J.; Yang, X.; Wang, Y.; Guo, H.; Fu, X.; Liang, C.; Wu, M.; Shen, P. K.; Gao, Q. Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemcial performance. Adv. Funct. Mater. 2010, 20, 617–623.CrossRefGoogle Scholar
  52. [52]
    Wang, Y.; Xia, H.; Lu, L.; Lin, J. Excellent performance in lithium-ion battery anodes: Rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 2010, 4, 1425–1432.CrossRefGoogle Scholar
  53. [53]
    Lang, J. W.; Kong, L. B.; Wu, W. J.; Luo, Y. C.; Kang, L. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 2008, 4213–4215.Google Scholar
  54. [54]
    Hu, G.; Li, C.; Gong, H. Capacitance decay of nano porous nickel hydroxide. J. Power Sources 2010, 195, 6977–6981.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Huanlei Wang
    • 1
    • 2
  • Chris M. B. Holt
    • 1
    • 2
  • Zhi Li
    • 1
    • 2
  • Xuehai Tan
    • 1
    • 2
  • Babak Shalchi Amirkhiz
    • 1
    • 2
  • Zhanwei Xu
    • 1
    • 2
  • Brian C. Olsen
    • 1
    • 2
  • Tyler Stephenson
    • 1
    • 2
  • David Mitlin
    • 1
    • 2
  1. 1.Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.National Institute for Nanotechnology (NINT)National Research Council of CanadaEdmontonCanada

Personalised recommendations