Nano Research

, Volume 5, Issue 9, pp 595–604

Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes

  • Zhen Li
  • Jinquan Wei
  • Peixu Li
  • Luhui Zhang
  • Enzheng Shi
  • Chunyan Ji
  • Jiang Liu
  • Daming Zhuang
  • Zhendong Liu
  • Ji Zhou
  • Yuanyuan Shang
  • Yibin Li
  • Kunlin Wang
  • Hongwei Zhu
  • Dehai Wu
  • Anyuan Cao
Research Article

Abstract

Incorporation of a bulk heterojunction is an effective strategy to enhance charge separation and carrier transport in solar cells, and has been adopted in polymeric and colloidal nanoparticle solar cells to improve energy conversion efficiency. Here, we report bulk heterojunction solar cells based on one-dimensional structures, fabricated by mixing CdS nanowires (CdS NWs) and single-walled carbon nanotubes (CNTs) to form a composite film with mutually interpenetrating networks through a simple solution-filtration process. Within the composite, the CNT network boosts charge separation by extracting holes generated from CdS NWs and also forms the transport path for carrier collection by the external electrode. At an optimized CNT loading of about 5 wt.%, the CdS NW/CNT bulk heterojunction solar cells showed three orders of magnitude increase in photocurrent and cell efficiency compared to a cell with the same materials arranged in a stacked layer configuration with a plain heterojunction. External quantum efficiency and photoluminescence studies revealed the efficient charge transfer process from photoexcited CdS NWs to CNTs in the mixed form. Our results indicate that the bulk heterojunction structure strategy can be extended to semiconductor NWs and CNTs and can greatly improve solar cell performance.

Keywords

Bulk heterojunction solar cell CdS nanowire carbon nanotube 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2012_245_MOESM1_ESM.pdf (307 kb)
Supplementary material, approximately 307 KB.

References

  1. [1]
    Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527–546.CrossRefGoogle Scholar
  2. [2]
    Kislyuk, V. V.; Dimitriev, O. P. Nanorods and nanotubes for solar cells. J. Nanosci. Nanotechnol. 2008, 8, 131–148.CrossRefGoogle Scholar
  3. [3]
    Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–888.CrossRefGoogle Scholar
  4. [4]
    Tang, J. Y.; Huo, Z. Y.; Brittman, S.; Gao, H. W.; Yang, P. D. Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 2011, 6, 568–572.CrossRefGoogle Scholar
  5. [5]
    Garnett, E. C.; Yang, P. D. Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 2008, 130, 9224–9225.CrossRefGoogle Scholar
  6. [6]
    Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148–154.CrossRefGoogle Scholar
  7. [7]
    Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282.CrossRefGoogle Scholar
  8. [8]
    Lu, Y. R.; Lal, A. High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett. 2010, 10, 4651–4656.CrossRefGoogle Scholar
  9. [9]
    Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215–218.CrossRefGoogle Scholar
  10. [10]
    Sun, C.; Mathews, N.; Zheng, M. R.; Sow, C. H.; Wong, L. H.; Mhaisalkar, S. G. Aligned tin oxide nanonets for high-performance transistors. J. Phys. Chem. C 2010, 114, 1331–1336.CrossRefGoogle Scholar
  11. [11]
    Ponzoni, A.; Comini, E.; Sberveglieri, G.; Zhou, J.; Deng, S. Z.; Xu, N. S.; Ding, Y.; Wang, Z. L. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 2006, 88, 203101.CrossRefGoogle Scholar
  12. [12]
    De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.CrossRefGoogle Scholar
  13. [13]
    Chen, P. C.; Shen, G. Z.; Shi, Y.; Chen, H. T.; Zhou, C. W. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/ single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403–4411.CrossRefGoogle Scholar
  14. [14]
    Hu, L. B.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L. F.; Cui, Y. Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. USA 2009, 106, 21490–21494.CrossRefGoogle Scholar
  15. [15]
    Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.CrossRefGoogle Scholar
  16. [16]
    Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. J.; Dennler, G.; Sariciftci, N. S.; Hu, L. B.; Gruner, G. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 2006, 88, 233506.CrossRefGoogle Scholar
  17. [17]
    Steinhagen, C.; Akhavan, V. A.; Goodfellow, B. W.; Panthani, M. G.; Harris, J. T.; Holmberg, V. C.; Korgel, B. A. Solution-liquid-solid synthesis of CuInSe2 nanowires and their implementation in photovoltaic devices. ACS Appl. Mater. Interf. 2011, 3, 1781–1785.CrossRefGoogle Scholar
  18. [18]
    Dennler, G.; Scharber, M. C.; Brabec, C. J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 21, 1323–1338.CrossRefGoogle Scholar
  19. [19]
    Barkhouse, D.; Debnath, R.; Kramer, I. J.; Zhitomirsky, D.; Pattantyus-Abraham, A. G.; Levina, L.; Etgar, L.; Gratzel, M.; Sargent, E. H. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 2011, 23, 3134–3138.CrossRefGoogle Scholar
  20. [20]
    Lee, J. C.; Lee, W.; Han, S. H.; Kim, T. G.; Sung, Y. M. Synthesis of hybrid solar cells using CdS nanowire array grown on conductive glass substrates. Electrochem. Commun. 2009, 11, 231–234.CrossRefGoogle Scholar
  21. [21]
    Jang, J. S.; Joshi, U. A.; Lee, J. S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007, 111, 13280–13287.CrossRefGoogle Scholar
  22. [22]
    Ye, Y.; Dai, Y.; Dai, L.; Shi, Z. J.; Liu, N.; Wang, F.; Fu, L.; Peng, R. M.; Wen, X. N.; Chen, Z. J. et al. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes. ACS Appl. Mater. Interf. 2010, 2, 3406–3410.CrossRefGoogle Scholar
  23. [23]
    Wei, J. Q.; Jia, Y.; Shu, Q. K.; Gu, Z. Y.; Wang, K. L.; Zhuang, D. M.; Zhang, G.; Wang, Z. C.; Luo, J. B.; Cao, A. Y. et al. Double-walled carbon nanotube solar cells. Nano Lett. 2007, 7, 2317–2321.CrossRefGoogle Scholar
  24. [24]
    Liang, C. W.; Roth, S. Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett. 2008, 8, 1809–1812.CrossRefGoogle Scholar
  25. [25]
    Zhang, L. H.; Jia, Y.; Wang, S. S.; Li, Z.; Ji, C. Y.; Wei, J. Q.; Zhu, H. W.; Wang, K. L.; Wu, D. H.; Shi, E. Z. et al. Carbon nanotube and CdSe nanobelt Schottky junction solar cells. Nano Lett. 2010, 10, 3583–3589.CrossRefGoogle Scholar
  26. [26]
    Wang, Q. Q.; Xu, G.; Han, G. R. Solvothermal synthesis and characterization of uniform CdS nanowires in high yield. J. Solid State Chem. 2005, 178, 2680–2685.CrossRefGoogle Scholar
  27. [27]
    Li, Z.; Jia, Y.; Wei, J. Q.; Wang, K. L.; Shu, Q. K.; Gui, X. C.; Zhu, H. W.; Cao, A. Y.; Wu, D. H. Large area, highly transparent carbon nanotube spiderwebs for energy harvesting. J. Mater. Chem. 2010, 20, 7236–7240.CrossRefGoogle Scholar
  28. [28]
    Kongkanand, A.; Dominguez, R. M.; Kamat, P. V. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 2007, 7, 676–680.CrossRefGoogle Scholar
  29. [29]
    Jang, Y. H.; Xin, X. K.; Byun, M.; Jang, Y. J.; Lin, Z. Q.; Kim, D. H. An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode. Nano Lett. 2012, 12, 479–485.CrossRefGoogle Scholar
  30. [30]
    Sanjines, R.; Abad, M. D.; Vaju, C.; Smajda, R.; Mionic, M.; Magrez, A. Electrical properties and applications of carbon based nanocomposite materials: An overview. Surf. Coat. Tech. 2011, 206, 727–733.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhen Li
    • 1
  • Jinquan Wei
    • 1
  • Peixu Li
    • 1
  • Luhui Zhang
    • 2
  • Enzheng Shi
    • 2
  • Chunyan Ji
    • 2
  • Jiang Liu
    • 1
  • Daming Zhuang
    • 1
  • Zhendong Liu
    • 3
  • Ji Zhou
    • 3
  • Yuanyuan Shang
    • 4
  • Yibin Li
    • 4
  • Kunlin Wang
    • 1
  • Hongwei Zhu
    • 1
  • Dehai Wu
    • 1
  • Anyuan Cao
    • 2
  1. 1.Key Laboratory for Advanced Materials Processing Technology and Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  3. 3.State Key Laboratory of New Ceramics and Fine Processing and Department of Materials Science and EngineeringTsinghua UniversityBeijingChina
  4. 4.Centre for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina

Personalised recommendations